AMS10 HW1 Grading Rubric

1. (faithful effort credit 16 pts- 2 pts each) A vector space is a set V on which two operations, vector addition and scalar multiplication are defined. Find and cite a credible source that defines these operations. What are the conditions that must be satisfied?

The vector addition operation $(+)$ must satisfy the following conditions:
(1) Commutative law: For all vectors \vec{u} and \vec{v} in $\mathrm{V}, \vec{u}+\vec{v}=\vec{v}+\vec{u}$
(2) Associative law: For all vectors \vec{u}, \vec{v}, and \vec{w} in $\mathrm{V}, \vec{u}+(\vec{v}+\vec{w})=(\vec{u}+\vec{v})+\vec{w}$
(3) Additive identity: The set V contains an additive identity element, denoted by a $\mathbf{0}$, such that for any vector \vec{v} in $\mathrm{V}, \vec{u}+\mathbf{0}=\mathbf{0}+\vec{u}$
(4) Additive inverses: For each vector \vec{v} in V , the equations $\vec{v}+\vec{x}=0$ and $\vec{x}+\vec{v}=0$ have a solution \vec{x} in V , called an additive inverse of \vec{v}, and denoted by $-\vec{v}$.

Note: Closure: If \vec{u} and \vec{v} are any vectors in V , then the sum $\vec{u}+\vec{v}$ belongs to V .
The scalar multiplication operation (\cdot) is defined between real numbers (or scalars) and vectors, and must satisfy the following conditions:
(5) Distributive law: For all real numbers c and all vectors \vec{u}, \vec{v} in V , was $c \cdot(\vec{u}+\vec{v})=c \cdot \vec{u}+c \cdot \vec{v}$
(6) Distributive law: For all real numbers c, d and all vectors \vec{v} in V , is $(c+d) \cdot \vec{v}=c \cdot \vec{v}+d \cdot \vec{v}$
(7) Associative law: For all real numbers c, d and all vectors \vec{v} in $\mathrm{V}, c \cdot(d \cdot \vec{v})=(c d) \cdot \vec{v}$
(8) Unitary law: For all vectors \vec{v} in $\mathrm{V}, 1 \cdot \vec{v}=\vec{v}$

Note: Closure: If \vec{v} is any vector in V , and c is any real number, then the product $c \cdot \vec{v}$ belongs to V.
2. (faithful effort credit 14 pts) Draw the vector $\vec{a}-\vec{b}$ using the parallelogram law. Note that $\vec{a}-\vec{b}=\vec{a}+(-\vec{b})$,

3. a. (14pts -7 pts each) Calculate the absolute value $|z|$ for the following complex numbers
i. $z=\frac{1}{2}+i \frac{\sqrt{3}}{2}$
ii. $z=5 \cdot \frac{-\sqrt{2}}{2}+i 5 \cdot \frac{\sqrt{2}}{2}$

Solution:
i. $|z|=1$
ii. $|z|=5$
b. (14pts - 7pts each) Write down the complex exponential form of
i. $z=\frac{1}{2}+i \frac{\sqrt{3}}{2}$
ii. $z=5 \cdot \frac{-\sqrt{2}}{2}+i 5 \cdot \frac{\sqrt{2}}{2}$
(Hint: there are an infinite number of representations)
Solution:
i. $z=e^{i\left(\frac{\pi}{3}+2 \pi k\right)}$ for $k=0, \pm 1, \pm 2, \ldots$
ii. $z=5 e^{i\left(\frac{3 \pi}{4}+2 \pi k\right)}$ for $k=0, \pm 1, \pm 2, \ldots$
c. $(27 \mathrm{pts})$ Use the complex exponential form of $z=10 \frac{\sqrt{3}}{2}+i 10 \frac{1}{2}$ to show that $x^{2}=10 \frac{\sqrt{3}}{2}+i 10 \frac{1}{2}$ has only two distinct solutions.

We have

$$
\begin{align*}
z^{2} & =10 \frac{\sqrt{3}}{2}+i 10 \frac{1}{2} \tag{1}\\
z^{2} & =10 e^{i\left(\frac{\pi}{6}+2 \pi k\right)}(10 \mathrm{pts} \text { if you got this far }) \tag{2}\\
\left(z^{2}\right)^{1 / 2} & =\left(10 e^{i\left(\frac{\pi}{6}+2 \pi k\right)}\right)^{1 / 2} \tag{3}\\
z & =\sqrt{10} e^{i\left(\frac{\pi}{12}+\pi k\right)} \tag{4}
\end{align*}
$$

for $k=0, \pm 1, \pm 2, \ldots(20 \mathrm{pts}$ for this far $)$
Note that

$$
\sqrt{10} e^{i\left(\frac{\pi}{12}+\pi\right)}=\sqrt{10} e^{i\left(\frac{\pi}{12}+3 \pi\right)}=\sqrt{10} e^{i\left(\frac{\pi}{12}+5 \pi\right)}=\sqrt{10} e^{i\left(\frac{\pi}{12}+(2 k+1) \pi\right)}
$$

and

$$
\sqrt{10} e^{i\left(\frac{\pi}{12}+2 \pi\right)}=\sqrt{10} e^{i\left(\frac{\pi}{12}+4 \pi\right)}=\sqrt{10} e^{i\left(\frac{\pi}{12}+6 \pi\right)}=\sqrt{10} e^{i\left(\frac{\pi}{12}+2 k \pi\right)}
$$

and so there are only two unique solutions (full credit).
4. (faithful effort credit 15pts-5pts each) Construct the following vectors in Matlab:
a. A 2×1 vector with all 1 's in the entries and define it u.
b. A 2×1 vector with the first element 4 and the second element 3 and define it v
c. What is $5 \mathrm{u}+\mathrm{v}$? Verify using Matlab

Write down using Matlab syntax the exact expression you would type into the command window for a-c.

Solution:
a. $\mathrm{u}=[1 ; 1]$;
b. $\mathrm{v}=[4 ; 3]$;
c. $5^{*} \mathrm{u}+\mathrm{v}$, answer: $5 \mathrm{u}+\mathrm{v}=[9 ; 8]$

