
Abstract

AMS10 HW1

1. A vector space is a set V on which two operations, vector addition and scalar multiplication are defined. Find and cite a credible source that defines these operations. What are the conditions that must be satisfied?

The vector addition operation $(+)$ must satisfy the following conditions:
(1) Commutative law: For all vectors \vec{u} and \vec{v} in V...
(2) Associative law: For all vectors \vec{u}, \vec{v}, and \vec{w} in $\mathrm{V} \ldots$
(3) Additive identity: The set V contains an additive identity element, denoted by a $\mathbf{0}$, such that for any vector \vec{v} in V ...
(4) Additive inverses: For each vector \vec{v} in V...

Note: Closure: If \vec{u} and \vec{v} are any vectors in V , then the sum $\vec{u}+\vec{v}$ belongs to V .
The scalar multiplication operation (\cdot) is defined between real numbers (or scalars) and vectors, and must satisfy the following conditions:
(5) Distributive law: For all real numbers c and all vectors \vec{u}, \vec{v} in V...
(6) Distributive law: For all real numbers c, d and all vectors \vec{v} in V ...
(7) Associative law: For all real numbers c, d and all vectors \vec{v} in $\mathrm{V} \ldots$
(8) Unitary law: For all vectors \vec{v} in V ...

Note: Closure: If \vec{v} is any vector in V , and c is any real number, then the product $c \cdot \vec{v}$ belongs to V.
2. Draw the vector $\vec{a}-\vec{b}$ using the parallelogram law. Note that $\vec{a}-\vec{b}=\vec{a}+(-\vec{b})$,
3. a. Calculate the absolute value $|z|$ for the following complex numbers
i. $z=\frac{1}{2}+i \frac{\sqrt{3}}{2}$
ii. $z=5 \cdot \frac{-\sqrt{2}}{2}+i 5 \cdot \frac{\sqrt{2}}{2}$
b. Write down the complex exponential form of
i. $z=\frac{1}{2}+i \frac{\sqrt{3}}{2}$
ii. $z=5 \cdot \frac{-\sqrt{2}}{2}+i 5 \cdot \frac{\sqrt{2}}{2}$
(Hint: there are an infinite number of representations)
c. Use the complex exponential form of $z=10 \frac{\sqrt{3}}{2}+i 10 \frac{1}{2}$ to show that $x^{2}=10 \frac{\sqrt{3}}{2}+i 10 \frac{1}{2}$ has only two distinct solutions.
4. Construct the following vectors in Matlab:
a. A 2×1 vector with all 1 's in the entries and define it u.
b. A 2×1 vector with the first element 4 and the second element 3 and define it v
c. What is $5 \mathrm{u}+\mathrm{v}$? Verify using Matlab

Write down using Matlab syntax the exact expression you would type into the command window for a-c.

