AMS10 HW2 Grading Rubric

Problem 1.Simplifying fractions of complex numbers. Suppose we have a complex number expressed as the division of two distinct complex numbers of the form

$$
z=\frac{a_{1}+i b_{1}}{a_{2}+i b_{2}} .
$$

Then a method of finding the real and imaginary component involves the complex conjugate of the denominator in order to remove any imaginary numbers from the denominator. Recall that $z \bar{z}=|z|^{2}$ is a real non-negative number. The following is an illustration of this

$$
\begin{align*}
z & =\frac{a_{1}+i b_{1}}{a_{2}+i b_{2}} \tag{18}\\
& =\frac{1}{1} \cdot \frac{a_{1}+i b_{1}}{a_{2}+i b_{2}} \tag{19}\\
& =\frac{a_{2}-i b_{2}}{a_{2}-i b_{2}} \cdot \frac{a_{1}+i b_{1}}{a_{2}+i b_{2}} \tag{20}\\
& =\frac{\left(a_{2}-i b_{2}\right)\left(a_{1}+i b_{1}\right)}{a_{2}^{2}+b_{2}^{2}} . \tag{21}
\end{align*}
$$

Apply this method to find the real and imaginary components of the following expressions (don't just plug in values but show work):
a. $\frac{3+i}{-2+i}$
b. $\frac{1+i}{2-i}$
c. $\frac{1-2 i}{2+2 i}$
d. $\frac{-1-2 i}{1+2 i}$
e. $\frac{-1+2 i}{5+3 i}$

Solution:

$$
\begin{align*}
& \text { a. } \frac{3+i}{2+i}=\frac{2-i}{2-i} \cdot \frac{3+i}{2+i}=\frac{6+2 i-3 i+1}{4+1}=\frac{7-i}{5}=\frac{7}{5}-\frac{1}{5} i \tag{28}\\
& \text { b. } \frac{1+i}{2-i}=\frac{2+i}{2+i} \cdot \frac{1+i}{2-i}=\frac{2+3 i-1}{4+1}=\frac{1+3 i}{5}=\frac{1}{5}+\frac{3}{5} i \tag{29}\\
& \text { (5pts)c. } \frac{1-2 i}{2+2 i}=\frac{2-2 i}{2-2 i} \cdot \frac{1-2 i}{2+2 i}=\frac{2-4 i-2 i-4}{4+4}=\frac{-2-6 i}{8}=-\frac{1}{4}-\frac{3}{4} i \tag{30}\\
& \text { (5pts)d. } \frac{-1-2 i}{1+2 i}=\frac{1-2 i}{1-2 i} \cdot \frac{-1-2 i}{1+2 i}=\frac{-1+2 i-2 i-4}{4+1}=\frac{-5}{5}=-1 \tag{31}\\
& \text { (5pts)e. } \frac{-1+2 i}{5+3 i}=\frac{5-3 i}{5-3 i} \cdot \frac{-1+2 i}{5+3 i}=\frac{-5+3 i+10 i+6}{25+9}=\frac{1+13 i}{34}=\frac{1}{34}+\frac{13}{34} i \tag{32}
\end{align*}
$$

Problem 2. Division of complex numbers using the exponential form. Suppose you are given two complex numbers in the form $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i \theta_{2}}$, then the division is given by

$$
\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \frac{e^{i \theta_{1}}}{e^{i \theta_{2}}}=\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)}
$$

which is equivalent to

$$
\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left(\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right)
$$

i. Find the argument (or phase) for the numerator and denominator of (a)-(e) in problem 1. Find the angle using arctan and applying the appropriate adjustment. Show work. Verify the answer using the Matlab command angle (e.g. angle ($1+\mathrm{i}$)).

Solution:

$$
\begin{align*}
\text { a. } \arg (3+i) & =\arctan (1 / 3) \tag{33}\\
\arg (2+i) & =\arctan (1 / 2) \tag{34}\\
\text { b. } \arg (1+i) & =\arctan (1) \tag{35}\\
\arg (2-i) & =\arctan (-1 / 2) \tag{36}\\
(5 p t s) \text { c. } \arg (1-2 i) & =\arctan (-2) \tag{37}\\
\arg (2+2 i) & =\arctan (1) \tag{38}\\
(5 p t s) \text { d. } \arg (-1-2 i) & =\arctan (2)-\pi \tag{39}\\
\arg (1+2 i) & =\arctan (2) \tag{40}\\
(5 p t s) \text { e. } \arg (-1+2 i) & =\arctan (-2)+\pi \tag{41}\\
\arg (5+3 i) & =\arctan (3 / 5) \tag{42}
\end{align*}
$$

ii. Find the modulus (or absolute value) for the numerator and denominator of (a)-(e) in Problem 1. You may work out by hand or use the Matlab command abs (e.g. abs $(1+\mathrm{i})$). You can also work out by hand and verify using Matlab.

Solution:

$$
\begin{align*}
\text { a. }|3+i| & =\sqrt{3^{2}+1^{2}}=\sqrt{10} \tag{44}\\
|2+i| & =\sqrt{(2)^{2}+1^{2}}=\sqrt{5} \tag{45}\\
\text { b. }|1+i| & =\sqrt{2} \tag{46}\\
|2-i| & =\sqrt{5} \tag{47}\\
(5 p t s) \text { c. }|1-2 i| & =\sqrt{5} \tag{48}\\
|2+2 i| & =\sqrt{8} \tag{49}\\
(5 p t s) \text { d. }|-1-2 i| & =\sqrt{5} \tag{50}\\
|1+2 i| & =\sqrt{5} \tag{51}\\
(5 p t s) \text { e. }|-1+2 i| & =\sqrt{5} \tag{52}\\
|5+3 i| & =\sqrt{34} \tag{53}
\end{align*}
$$

iii. Calculate the real and imaginary component of (a)-(e) using the complex exponential form and verify that it is equal to the results found in Problem 1. Recall, two complex numbers $a+i b$ and $c+i d$ are equal if and only if $a=c$ and $b=d$.

Solution: Applying the definition of the complex exponential we find that the real part is

$$
\begin{align*}
\text { a. Re: } \frac{r_{1}}{r_{2}} \cos \left(\theta_{1}-\theta_{2}\right) & =\frac{\sqrt{10}}{\sqrt{5}} \cos (\arctan (1 / 3)-\arctan (1 / 2))=1.4 \tag{55}\\
\text { Im: } \frac{r_{1}}{r_{2}} \cos \left(\theta_{1}-\theta_{2}\right) & =\frac{\sqrt{10}}{\sqrt{5}} \sin (\arctan (1 / 3)-\arctan (1 / 2))=-.2 \tag{56}\\
\text { b. Re: } \frac{r_{1}}{r_{2}} \cos \left(\theta_{1}-\theta_{2}\right) & =\frac{\sqrt{2}}{\sqrt{5}} \cos (\arctan (1)-\arctan (-1 / 2))=.2 \tag{57}\\
\text { Im: } \frac{r_{1}}{r_{2}} \cos \left(\theta_{1}-\theta_{2}\right) & =\frac{\sqrt{2}}{\sqrt{5}} \sin (\arctan (1)-\arctan (-1 / 2))=.6 \tag{58}\\
(5 p t s) \text { c. Re: } \frac{r_{1}}{r_{2}} \cos \left(\theta_{1}-\theta_{2}\right) & =\frac{\sqrt{5}}{\sqrt{8}} \cos (\arctan (-2)-\arctan (1))=-.25 \tag{59}\\
\text { Im: } \frac{r_{1}}{r_{2}} \cos \left(\theta_{1}-\theta_{2}\right) & =\frac{\sqrt{5}}{\sqrt{8}} \sin (\arctan (-2)-\arctan (1))=-.75 \tag{60}\\
\text { (5pts)d. Re: } \frac{r_{1}}{r_{2}} \cos \left(\theta_{1}-\theta_{2}\right) & =\cos (-\pi)=-1 \tag{61}\\
\text { Im: } \frac{r_{1}}{r_{2}} \cos \left(\theta_{1}-\theta_{2}\right) & =\sin (-\pi)=0 \tag{62}\\
\text { (5pts)e. Re: } \frac{r_{1}}{r_{2}} \cos \left(\theta_{1}-\theta_{2}\right) & =\frac{\sqrt{5}}{\sqrt{34}} \cos (\arctan (-2)+\pi-\arctan (3 / 5))=.0294 \tag{63}\\
\text { Im: } \frac{r_{1}}{r_{2}} \cos \left(\theta_{1}-\theta_{2}\right) & =\frac{\sqrt{5}}{\sqrt{34}} \sin (\arctan (-2)+\pi-\arctan (3 / 5))=0.3824 i \tag{64}
\end{align*}
$$

Problem 3. Given the complex number $z=-1+2 i$ find the m distinct m-th roots $\left(z^{1 / m}\right)$ for
a. $\mathrm{m}=10$
b. $m=45$
c. $\mathrm{m}=100$

It is ok to leave in exponential form.
Solution: The complex form is

$$
z=\sqrt{5} e^{i \theta}
$$

where

$$
\theta=\arctan (-2)+\pi .
$$

$$
\begin{align*}
& \text { (5pts)a. } 5^{1 / 20} e^{i(\theta+2 \pi k) / 10} \text { for } k=0,1, \ldots, 9 \tag{66}\\
& (5 p t s) \text { b. } 5^{1 / 90} e^{i(\theta+2 \pi k) / 45} \text { for } k=0,1, \ldots, 44 \tag{67}\\
& (5 p t s) \text { c. } 5^{1 / 200} e^{i(\theta+2 \pi k) / 100} \text { for } k=0,1, \ldots, 99 \tag{68}
\end{align*}
$$

Problem 4.Calculate the following powers of $z=-1+2 i$
a. z^{10}
b. z^{15}
c. z^{200}

It is ok to leave in exponential form.

Solution

$$
\begin{align*}
& \text { a. } 5^{5} e^{i \theta 10} \tag{70}\\
& \text { b. } 5^{15 / 2} e^{i \theta 15} \tag{71}\\
& \text { c. } 5^{100} e^{i \theta 200} \tag{72}
\end{align*}
$$

Problem 5. Consider the following linear system of equations

$$
\begin{array}{r}
x_{1}+5 x_{2}+2 x_{3}=3 \\
x_{2}+5 x_{3}=5 \\
2 x_{1}+x_{2}+x_{3}=1 . \tag{76}
\end{array}
$$

a. Apply the following sequence of elementary operations

1. $L_{2} \leftrightarrow L_{3}$
2. $-2 L_{1}+L_{2} \rightarrow L_{2}$
3. $\frac{1}{9} L_{2}+L_{3} \rightarrow L_{3}$.

You should end up in echelon form (in fact you will have triangular form)
Solution

1. $L_{2} \leftrightarrow L_{3}$

$$
\begin{align*}
x_{1}+5 x_{2}+2 x_{3} & =3 \tag{77}\\
2 x_{1}+x_{2}+x_{3} & =1 \tag{78}\\
x_{2}+5 x_{3} & =5 \tag{79}
\end{align*}
$$

2. $-2 L_{1}+L_{2} \rightarrow L_{2}$

$$
\begin{array}{r}
x_{1}+5 x_{2}+2 x_{3}=3 \\
0-9 x_{2}-3 x_{3}=-5 \\
x_{2}+5 x_{3}=5 \tag{82}
\end{array}
$$

3. $\frac{1}{9} L_{2}+L_{3} \rightarrow L_{3}$

$$
\begin{array}{r}
x_{1}+5 x_{2}+2 x_{3}=3 \\
0-9 x_{2}-3 x_{3}=-5 \\
0+(-1 / 3+5) x_{3}=5-5 / 9 \tag{85}
\end{array}
$$

b.(15pts faithful effort -5 pts for each variable) Solve for x_{1}, x_{2}, and x_{3}.

$$
\begin{gathered}
x_{3}=20 / 21=.9524 \\
x_{2}=\frac{-1}{9}(-5+20 / 7)=.2381 \\
x_{3}=3-40 / 21+\frac{5}{9}(-5+20 / 7)=-.0952
\end{gathered}
$$

c. (10pts faithful effort) Does this system have no solution, one solution, or infinite solutions. How can you be sure? (hint: apply theorem for systems in echelon form)

This system has one unique solution. It has two equations and two unknowns in echelon form and so it has a unique solution.

