AMS212a HW2

1. (45 pts) Let \(u(x, y) \) and \(v(r, \theta) \) be two functions which, for \(x = r \cos(\theta) \) and \(y = r \sin(\theta) \), satisfy

\[
 u(x, y) = v(r, \theta) \tag{2}
\]

(a) (15 pts) Show that, for \(x = r \cos(\theta) \) and \(y = r \sin(\theta) \) we have

\[
 u_x(x, y) = \cos(\theta)v_r(r, \theta) - \frac{\sin(\theta)}{r}v_\theta(r, \theta) \tag{3}
\]

and

\[
 u_y(x, y) = \sin(\theta)v_r(r, \theta) - \frac{\cos(\theta)}{r}v_\theta(r, \theta) \tag{4}
\]

[Method: Differentiate the identity \(u(r \cos(\theta), r \sin(\theta)) = v(r, \theta) \) with respect to \(r \) and \(\theta \) and solve for \(u_x \) and \(u_y \)]

(b) (15 pts) Noting that equations (3) and (4) are of the form (2), apply the method above to (3) and (4) to obtain explicit expressions for \(u_{xx}(x, y) \) and \(u_{yy}(x, y) \) for \(x = r \cos(\theta) \) and \(y = r \sin(\theta) \).

(c) (15 pts) Show that in two spatial dimensions, for \(x = r \cos(\theta) \) and \(y = r \sin(\theta) \) we have

\[
 \nabla^2 u(x, y) = u_{xx}(x, y) + u_{yy}(x, y) = v_{rr}(r, \theta) + \frac{1}{r}v_r(r, \theta) + \frac{1}{r^2}v_{\theta\theta}(r, \theta)
\]

Note, also, that

\[
 v_{rr} + \frac{1}{r}v_r + \frac{1}{r^2}v_{\theta\theta} = \frac{1}{r}(rv_r)_r + \frac{1}{r^2}v_{\theta\theta}.
\]

2. (55 pts)

(a) (25 pts) Solve \(u_{xx} + u_{yy} = 0 \) in the exterior \(\{ r > a \} \) of a disk, with the boundary condition \(u = 1 + 3 \sin(\theta) \) on \(r = a \) and the condition that \(u \) be bounded at infinity.

(b) (30 pts) Solve \(u_{xx} + u_{yy} = 0 \) in the disk \(r < a \) with the boundary condition

\[
 u_r - hu = f(\theta)
\]

where \(f \) is an arbitrary function. Express the answer in terms of the Fourier coefficients of \(f \).

Hint: Should find coefficient of Fourier expansion to include \(c_n(r) = Ar^n \) for \(n \neq 0 \) for part (a) and \(c_n(r) = A_n r^n + B_n r^{-n} \) for \(n \neq 0 \) for part (b) and don’t forget the \(n = 0 \) case. Show ALL work. Final solution should include 3 cases, one of which does not have a solution—look for cases of singularities when solving coefficients.