AMS10 HW2

Problem 1.Simplifying fractions of complex numbers. Suppose we have a complex number expressed as the division of two distinct complex numbers of the form

$$
z=\frac{a_{1}+i b_{1}}{a_{2}+i b_{2}}
$$

Then a method of finding the real and imaginary component involves the complex conjugate of the denominator in order to remove any imaginary numbers from the denominator. Recall that $z \bar{z}=|z|^{2}$ is a real non-negative number. The following is an illustration of this

$$
\begin{align*}
z & =\frac{a_{1}+i b_{1}}{a_{2}+i b_{2}} \tag{5}\\
& =\frac{1}{1} \cdot \frac{a_{1}+i b_{1}}{a_{2}+i b_{2}} \tag{6}\\
& =\frac{a_{2}-i b_{2}}{a_{2}-i b_{2}} \cdot \frac{a_{1}+i b_{1}}{a_{2}+i b_{2}} \tag{7}\\
& =\frac{\left(a_{2}-i b_{2}\right)\left(a_{1}+i b_{1}\right)}{a_{2}^{2}+b_{2}^{2}} . \tag{8}
\end{align*}
$$

Apply this method to find the real and imaginary components of the following expressions (don't just plug in values but show work):

$$
\begin{align*}
& \text { a. } \frac{3+i}{2+i} \tag{9}\\
& \text { b. } \frac{1+i}{2-i} \tag{10}\\
& \text { c. } \frac{1-2 i}{2+2 i} \tag{11}\\
& \text { d. } \frac{-1-2 i}{1+2 i} \tag{12}\\
& \text { e. } \frac{-1+2 i}{5+3 i} \tag{13}
\end{align*}
$$

Problem 2. Division of complex numbers using the exponential form. Suppose you are given two complex numbers in the form $z_{1}=r_{1} e^{i \theta_{1}}$ and $z_{2}=r_{2} e^{i \theta_{2}}$, then the division is given by

$$
\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} e^{i \theta_{1}} e^{i \theta_{2}}=\frac{r_{1}}{r_{2}} e^{i\left(\theta_{1}-\theta_{2}\right)}
$$

which is equivalent to

$$
\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}\left(\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right)
$$

a. Find the argument (or phase) for the numerator and denominator of (a)-(e) in Problem 1. Find the angle using arctan and applying the appropriate adjustment. Show work. Verify the answer using the Matlab command angle (e.g. angle ($1+\mathrm{i}$)).
b. Find the modulus (or absolute value) for the numerator and denominator of (a)-(e) in Problem 1. You may work out by hand or use the Matlab command abs (e.g. abs(1+i)). You can also work out by hand and verify using Matlab.
c. Calculate the real and imaginary component of (a)-(e) using the complex exponential form and verify that it is equal to the results found in Problem 1. Recall, two complex numbers $a+i b$ and $c+i d$ are equal if and only if $a=c$ and $b=d$.
Problem 3. Given the complex number $z=-1+2 i$ find the m distinct m-th roots $\left(z^{1 / m}\right)$ for
a. $m=10$
b. $m=45$
c. $\mathrm{m}=100$

It is ok to leave in exponential form.
Problem 4.Calculate the following powers of $z=-1+2 i$
a. z^{10}
b. z^{15}
c. z^{200}

It is ok to leave in exponential form.
Problem 5. Consider the following linear system of equations

$$
\begin{array}{r}
x_{1}+5 x_{2}+2 x_{3}=3 \\
x_{2}+5 x_{3}=5 \\
2 x_{1}+x_{2}+x_{3}=1 . \tag{17}
\end{array}
$$

a. Apply the following sequence of elementary operations

1. $L_{2} \leftrightarrow L_{3}$
2. $-2 L_{1}+L_{2} \rightarrow L_{2}$
3. $\frac{1}{9} L_{2}+L_{3} \rightarrow L_{3}$.

You should end up in echelon form (in fact you will have triangular form)
b. Solve for x_{1}, x_{2}, and x_{3}.
c. Does this system have no solution, one solution, or infinite solutions. How can you be sure? (hint: apply theorem for systems in echelon form)

