AMS10 HW6- Grading Rubric

Automatic 10pts for submission

Points on all problems given for effort.
Problem 1 (30pts-5pts/each) Given the matrices

$$
A=\left[\begin{array}{cc}
5 & 4 \\
-3 & 1
\end{array}\right] \quad B=\left[\begin{array}{ccc}
1 & 2 & 1 \\
-2 & 1 & 4 \\
2 & 0 & 1
\end{array}\right] \quad C=\left[\begin{array}{ccc}
0 & -3 & 1 \\
1 & 1 & -2 \\
0 & 5 & 1
\end{array}\right] \quad D=\left[\begin{array}{cccc}
0 & -3 & 1 & 0 \\
1 & 0 & -1 & 2 \\
0 & 0 & 1 & 5 \\
3 & -1 & 0 & 2
\end{array}\right]
$$

calculate the following determinants:
a. $\operatorname{det}(A)=17$
b. $\operatorname{det}(B)=19$
c. $\operatorname{det}(C)=8$
d. $\operatorname{det}(B C)=\operatorname{det}(B) \operatorname{det}(C)=19 \times 8=152$ (Hint: Can use results from b. and c.)
e. $\operatorname{det}(C B)=\operatorname{det}(C) \operatorname{det}(B)=\operatorname{det}(B) \operatorname{det}(C)=19 \times 8=152$ (Hint: Can use results from b. and c.)
f. $\operatorname{det}(D)=-52$

You can verify answers using Matlab.

Problem 2 (25pts-5pts/each)

a. Find the determinant of the following matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
3 & 2 & 2 \\
2 & 0 & 1
\end{array}\right]
$$

$\operatorname{det}(A)=0$
b. Use Matlab to calculate the eigenvalues by using the matlab command eig and verify that at least one of the eigenvalues is zero.

The eigenvalues of A are $\lambda_{1}=4.6458, \lambda_{2}=-.6458$, and $\lambda_{3}=0$.
c. Find a basis for the Image of A. Recall, the image of A is the span of the column vectors. Use one of the methods in Lecture 10. The number of elements in the basis should equal the number of nonzero eigenvalues.

$$
\operatorname{rref}(A)=\left[\begin{array}{ccc}
1 & 0 & .5 \\
0 & 1 & .25 \\
0 & 0 & 0
\end{array}\right]
$$

The pivot points are in the first two columns so we take the first two columns of the matrix A as the basis

$$
\left\{\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right]\right\}
$$

d. Find a basis for the Kernel of A. The number of elements in the basis should equal the number of zero eigenvalues.

Using the row canonical form we solve $A x=0$

$$
\begin{array}{r}
x_{1}+.5 x_{3}=0 \rightarrow x_{1}=-.5 x_{3} \\
x_{2}+.25 x_{3}=0 \rightarrow x_{2}=-.25 x_{3}
\end{array}
$$

A solution vector has the form

$$
\left[\begin{array}{c}
-.5 x_{3} \\
-.25 x_{3} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-.5 \\
-.25 \\
1
\end{array}\right]
$$

and so a basis is

$$
\left\{\left[\begin{array}{c}
-.5 \\
-.25 \\
1
\end{array}\right]\right\}
$$

e. Does A^{-1} exist?

No, because the matrix A is singular.

Problem 3. (35pts-5pts/each)
a. Eigenvalues of the matrix

$$
A=\left[\begin{array}{ll}
5 & 4 \\
3 & 1
\end{array}\right]
$$

in Problem 1 can be calculated by solving the system $\operatorname{det}(s I-A)=0$. Solve for s :

$$
\operatorname{det}\left(\left[\begin{array}{cc}
s & 0 \\
0 & s
\end{array}\right]-\left[\begin{array}{ll}
5 & 4 \\
3 & 1
\end{array}\right]\right)=0
$$

You may use the quadratic formula. The general quadratic equation $a x^{2}+b x+c=0$ has the following solution

$$
\begin{gathered}
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
\operatorname{det}\left(\left[\begin{array}{cc}
s-5 & -4 \\
-3 & s-1
\end{array}\right]\right)=(s-5)(s-1)-12=s^{2}-6 s-7 . \\
\lambda_{1,2}=\frac{6 \pm \sqrt{6^{2}-4(-7)}}{2} \rightarrow \lambda_{1}=7, \lambda_{2}=-1
\end{gathered}
$$

b. Find the determinant of the matrix and verify that $\operatorname{det}(A)=\lambda_{1} \lambda_{2}$

$$
\operatorname{det}(A)=5(1)-4(3)=5-12=-7
$$

c. Find a basis for the Image of A.

$$
\begin{gathered}
\operatorname{rref}(A)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
\left\{\left[\begin{array}{l}
5 \\
3
\end{array}\right],\left[\begin{array}{l}
4 \\
1
\end{array}\right]\right\}
\end{gathered}
$$

d. Find a basis for the Kernel of A.

The matrix is full rank and there is no zero eigenvalue so the Kernel of A is $\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$
e. Does A^{-1} exist?

Yes, the matrix is full rank and invertible and so A^{-1} exists.
f. For each of the eigenvalues calculate the matrix $M_{i}=A-\lambda_{i} I$

$$
\begin{gathered}
M_{1}=A-7 I=\left[\begin{array}{cc}
-2 & 4 \\
3 & -6
\end{array}\right] \\
M_{2}=A+I=\left[\begin{array}{ll}
6 & 4 \\
3 & 2
\end{array}\right]
\end{gathered}
$$

g. Find the basis for the Kernel of each of the matrices M_{1} and M_{2} found in part f. These are the eigenvectors.

$$
\begin{aligned}
& \operatorname{rref}\left(M_{1}\right)=\left[\begin{array}{cc}
1 & -2 \\
0 & 0
\end{array}\right] \rightarrow\left\{\left[\begin{array}{c}
-2 \\
1
\end{array}\right]\right\} \\
& \operatorname{rref}\left(M_{2}\right)=\left[\begin{array}{cc}
1 & 2 / 3 \\
0 & 0
\end{array}\right] \rightarrow\left\{\left[\begin{array}{c}
-2 / 3 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

