AMS10 HW6

Problem 1 Given the matrices

$$A = \begin{bmatrix} 5 & 4 \\ -3 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 2 & 1 \\ -2 & 1 & 4 \\ 2 & 0 & 1 \end{bmatrix} \quad C = \begin{bmatrix} 0 & -3 & 1 \\ 1 & 1 & -2 \\ 0 & 5 & 1 \end{bmatrix} \quad D = \begin{bmatrix} 0 & -3 & 1 & 0 \\ 1 & 0 & -1 & 2 \\ 0 & 0 & 1 & 5 \\ 3 & -1 & 0 & 2 \end{bmatrix}$$

calculate the following determinants:

- **a**. det(A)
- **b**. det(B)
- **c**. det(C)
- **d**. det(BC) (Hint: Can use results from b. and c.)
- e. det(CB) (Hint: Can use results from b. and c.)
- f. det(D)

You can verify answers using Matlab.

Problem 2

a. Find the determinant of the following matrix

$$A = \left[\begin{array}{rrrr} 1 & 2 & 1 \\ 3 & 2 & 2 \\ 2 & 0 & 1 \end{array} \right]$$

b. Use Matlab to calculate the eigenvalues by using the matlab command **eig** and verify that at least one of the eigenvalues is zero.

c. Find a basis for the Image of A. Recall, the image of A is the span of the column vectors. Use one of the methods in Lecture 10. The number of elements in the basis should equal the number of nonzero eigenvalues.

d. Find a basis for the Kernel of A. The number of elements in the basis should equal the number of zero eigenvalues.

e. Does A^{-1} exist?

Problem 3

a. Eigenvalues of the matrix

$$A = \left[\begin{array}{cc} 5 & 4 \\ 3 & 1 \end{array} \right]$$

in Problem 1 can be calculated by solving the system det(sI - A) = 0. Solve for s:

$$\det\left(\left[\begin{array}{cc} s & 0\\ 0 & s\end{array}\right] - \left[\begin{array}{cc} 5 & 4\\ 3 & 1\end{array}\right]\right) = 0$$

You may use the quadratic formula. The general quadratic equation $ax^2 + bx + c = 0$ has the following solution

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

b. Find the determinant of the matrix and verify that $\det(A) = \lambda_1 \lambda_2$

- **c.** Find a basis for the Image of A.
- **d.** Find a basis for the Kernel of A.
- **e.** Does A^{-1} exist?

f. For each of the eigenvalues calculate the matrix $M_i = A - \lambda_i I$

g. Find the basis for the Kernel of each of the matrices M_1 and M_2 found in part f. These are the eigenvectors.