AMS10 HW6

Problem 1 Given the matrices

$$
A=\left[\begin{array}{cc}
5 & 4 \\
-3 & 1
\end{array}\right] \quad B=\left[\begin{array}{ccc}
1 & 2 & 1 \\
-2 & 1 & 4 \\
2 & 0 & 1
\end{array}\right] \quad C=\left[\begin{array}{ccc}
0 & -3 & 1 \\
1 & 1 & -2 \\
0 & 5 & 1
\end{array}\right] \quad D=\left[\begin{array}{cccc}
0 & -3 & 1 & 0 \\
1 & 0 & -1 & 2 \\
0 & 0 & 1 & 5 \\
3 & -1 & 0 & 2
\end{array}\right]
$$

calculate the following determinants:
a. $\operatorname{det}(A)$
b. $\operatorname{det}(B)$
c. $\operatorname{det}(C)$
d. $\operatorname{det}(B C)$ (Hint: Can use results from b. and c.)
e. $\operatorname{det}(C B)$ (Hint: Can use results from b. and c.)
f. $\operatorname{det}(D)$

You can verify answers using Matlab.

Problem 2

a. Find the determinant of the following matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
3 & 2 & 2 \\
2 & 0 & 1
\end{array}\right]
$$

b. Use Matlab to calculate the eigenvalues by using the matlab command eig and verify that at least one of the eigenvalues is zero.
c. Find a basis for the Image of A. Recall, the image of A is the span of the column vectors. Use one of the methods in Lecture 10. The number of elements in the basis should equal the number of nonzero eigenvalues.
d. Find a basis for the Kernel of A. The number of elements in the basis should equal the number of zero eigenvalues.
e. Does A^{-1} exist?

Problem 3

a. Eigenvalues of the matrix

$$
A=\left[\begin{array}{ll}
5 & 4 \\
3 & 1
\end{array}\right]
$$

in Problem 1 can be calculated by solving the system $\operatorname{det}(s I-A)=0$. Solve for s :

$$
\operatorname{det}\left(\left[\begin{array}{cc}
s & 0 \\
0 & s
\end{array}\right]-\left[\begin{array}{ll}
5 & 4 \\
3 & 1
\end{array}\right]\right)=0
$$

You may use the quadratic formula. The general quadratic equation $a x^{2}+b x+c=0$ has the following solution

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

b. Find the determinant of the matrix and verify that $\operatorname{det}(A)=\lambda_{1} \lambda_{2}$
c. Find a basis for the Image of A.
d. Find a basis for the Kernel of A.
e. Does A^{-1} exist?
f. For each of the eigenvalues calculate the matrix $M_{i}=A-\lambda_{i} I$
g. Find the basis for the Kernel of each of the matrices M_{1} and M_{2} found in part f. These are the eigenvectors.

