AMS10 HW6 Solutions

Problem 1 (30 pts-10pts/each) In two dimensions, the standard rotation matrix has the following form

$$
A=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right],
$$

which rotates column vectors by an angle θ.
We begin by finding the eigenvalues and eigenfunctions in terms of θ.

$$
\begin{aligned}
p(s)=\operatorname{det}(s I-A)=\operatorname{det}\left(\left[\begin{array}{cc}
s-\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & s-\cos (\theta)
\end{array}\right]\right)=(s-\cos (\theta))^{2}+\sin ^{2}(\theta) \\
p(\lambda)=0 \Longrightarrow \lambda^{2}-2 \lambda \cos (\theta)+1=0 \Longrightarrow \lambda_{1}=\cos (\theta)+i \sin (\theta), \lambda_{2}=\cos (\theta)-i \sin (\theta) \\
\left(A-\lambda_{1} I\right) \vec{v}_{1}=\left[\begin{array}{cc}
-i \sin (\theta) & -\sin (\theta) \\
\sin (\theta) & -i \sin (\theta)
\end{array}\right] \vec{v}_{1}=0 \Longrightarrow \vec{v}_{1}=\left[\begin{array}{c}
1 \\
-i
\end{array}\right] \\
\left(A-\lambda_{2} I\right) \vec{v}_{2}=\left[\begin{array}{cc}
i \sin (\theta) & -\sin (\theta) \\
\sin (\theta) & i \sin (\theta)
\end{array}\right] \vec{v}_{2}=0 \Longrightarrow \vec{v}_{2}=\left[\begin{array}{l}
1 \\
i
\end{array}\right]
\end{aligned}
$$

Note that the eigenvectors are the same for any θ such that $\sin (\theta) \neq 0$, otherwise all vectors are in the eigenspace.
a. For $\theta=\pi / 4$ compute by hand the eigenvalues and eigenvectors. Plot the vector $x=[1,0]^{T}$ and the resulting vector $A x$ after transformation.

$$
\begin{gathered}
\lambda_{1}=\cos (\pi / 4)+i \sin (\pi / 4)=1 / \sqrt{2}+i / \sqrt{2}, \quad \lambda_{2}=\cos (\pi / 4)-i \sin (\pi / 4)=1 / \sqrt{2}-i / \sqrt{2} \\
A \vec{x}=A\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]
\end{gathered}
$$

b. For $\theta=\pi / 2$ compute by hand the eigenvalues and eigenvectors. Plot the vector $x=[1,0]^{T}$ and the resulting vector $A x$ after transformation.

$$
\begin{array}{cc}
\lambda_{1}=\cos (\pi / 2)+i \sin (\pi / 2)=i, & \lambda_{2}=\cos (\pi / 2)-i \sin (\pi / 2)=-i \\
& A \vec{x}=A\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{array}
$$

c. Is any real vector invariant under this transformation?

For $\theta \neq 0$, no, because the eigenvectors are complex. There are no real eigenvectors and so there does not exist a real vector that is invariant under a rotational transformation, except for $\overrightarrow{0}$. For $\theta=0,2 \pi, 4 \pi, \ldots$, yes, for all vectors.

Problem 2 (20pts-5pts/each) Let

$$
u=\left[\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right], v=\left[\begin{array}{c}
-3 \\
2 \\
2
\end{array}\right] .
$$

Compute the following quantities.
a. $u^{T} v$

$$
[13-2]\left[\begin{array}{c}
-3 \\
2 \\
2
\end{array}\right]=1 \cdot(-3)+3 \cdot(2)-2 \cdot(2)=-1
$$

b. $v^{T} u$

$$
v^{T} u=u^{T} v=-1
$$

c. $\left(\frac{u^{T} u}{v^{T} u}\right) u$

$$
\begin{aligned}
& {[13-2]\left[\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right]=1 \cdot(1)+3 \cdot(9)-2 \cdot(-2)=14} \\
& \left(\frac{u^{T} u}{v^{T} u}\right) u=\left(\frac{14}{-1}\right) u=-14\left[\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right]=\left[\begin{array}{c}
-14 \\
-42 \\
28
\end{array}\right]
\end{aligned}
$$

d. $\|u-v\|$

$$
\begin{gathered}
{\left[\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right]-\left[\begin{array}{c}
-3 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{c}
4 \\
1 \\
-4
\end{array}\right]} \\
\|u-v\|=\sqrt{2+1^{1}+(-4)^{2}}=\sqrt{33}
\end{gathered}
$$

Problem 3 (30pts-10pts/each) Use SVD to compute the pseudoinverse of A to solve the system $A \vec{x}=\vec{b}$ for

$$
A=\left[\begin{array}{ccc}
0 & 0 & 4 \tag{3}\\
2 & 3 & -1 \\
0 & 1 & 8 \\
2 & 4 & 7 \\
4 & 7 & 6
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
-1 \\
-3 \\
0 \\
-3 \\
-6
\end{array}\right]
$$

a. SVD has the following form,

$$
\begin{equation*}
A=U \Sigma V^{*} \tag{4}
\end{equation*}
$$

Use Matlab to get the eigenvectors of $A A^{*}$ and $A^{*} A$ which compose the matrices $U \in \mathbb{C}^{5 \times 5}$ and $V^{*} \in \mathbb{C}^{3 \times 3}$, respectively. The eigenvalues of $A A^{*}$ or $A^{*} A$ (check that they are equal) are the squares of the diagonal elements of $\Sigma \in \mathbb{R}^{5 \times 3}$, and the lower $5-3=2$ rows of Σ are filled with zeros.

$$
\begin{gathered}
U=\left[\begin{array}{ccccc}
0.2227 & -0.3392 & 0.9140 & 0.0000 & -0.0000 \\
0.0787 & 0.5422 & 0.1821 & 0.8115 & -0.0904 \\
0.4787 & -0.5736 & -0.3295 & 0.3606 & -0.4509 \\
0.5573 & -0.0313 & -0.1474 & 0.0904 & 0.8115 \\
0.6360 & 0.5109 & 0.0347 & -0.4509 & -0.3606
\end{array}\right], \quad \Sigma=\left[\begin{array}{ccc}
14.8996 & 0 & 0 \\
0 & 6.5530 & 0 \\
0 & 0 & 0.2458 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
V^{*}=\left[\begin{array}{ccc}
0.2561 & 0.4964 & 0.8295 \\
0.4678 & 0.6873 & -0.5557 \\
0.8459 & -0.5303 & 0.0562
\end{array}\right]
\end{gathered}
$$

b. Compute the pseudoinverse of A as $A^{+}=V \Sigma^{+} U^{*}$ where the pseudoinverse of Σ has diagonal elements that the inverses of those in Σ. Check your solution with the pinv command.
$\Sigma^{+}=\left[\begin{array}{ccccc}0.0671 & 0 & 0 & 0 & 0 \\ 0 & 0.1526 & 0 & 0 & 0 \\ 0 & 0 & 4.0682 & 0 & 0\end{array}\right], A^{+}=\left[\begin{array}{ccccc}3.1250 & 0.6667 & -1.1667 & -0.5000 & 0.1667 \\ -2.0000 & -0.3333 & 0.6667 & 0.3333 & -0.0000 \\ 0.2500 & -0.0000 & -0.0000 & 0.0000 & 0.0000\end{array}\right]$
c. Compute $\vec{x}=A^{+} \vec{b}$ and confirm your solution by computing $A \vec{x}$.

$$
\vec{x}=\left[\begin{array}{c}
-4.6250 \\
2.0000 \\
-0.2500
\end{array}\right], \quad A \vec{x}=\vec{b}=\left[\begin{array}{c}
-1 \\
-3 \\
0 \\
-3 \\
-6
\end{array}\right]
$$

Problem 4 (15pts-5pts/each) Determine if the following pairs of vectors are orthogonal.

$$
\left.\begin{array}{c}
\left\{\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right],\left[\begin{array}{c}
2 \\
1 \\
2.5
\end{array}\right]\right\}, \\
{[21-2]\left[\begin{array}{c}
2 \\
1 \\
2.5
\end{array}\right]=} \\
\end{array}\right\} \begin{aligned}
&\left\{\left[\begin{array}{c}
-3 \\
7 \\
4 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-8 \\
25 \\
-7
\end{array}\right]\right\} \\
& {[-3740]\left[\begin{array}{c}
-8 \\
25 \\
-7
\end{array}\right]=-3 \cdot(1)+7 \cdot(-8)+4 \cdot(25)+0 \cdot-7=-41 \text { not orthogonal } } \\
& {[13-3-74]\left[\begin{array}{c}
1 \\
0 \\
0 \\
0
\end{array}\right]=13 \cdot(0)-3 \cdot(0)-7 \cdot(0)+4 \cdot 0=0 \text { orthogonal } }
\end{aligned}
$$

Problem 5 (20pts) Let $W=\operatorname{colsp}(A)$, where

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 4 \\
3 & 1
\end{array}\right]
$$

Find W^{\perp}, the orthogonal complement of W. We begin by taking the transpose of A and then finding the null space.

$$
\begin{gathered}
A^{T}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 1
\end{array}\right] \\
A^{T} x=0 \Longrightarrow\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Longrightarrow\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
x_{1}=-2 x_{2} \\
x_{3}=0 . \\
x=\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right] \\
W^{\perp}=\operatorname{span}\{x\}
\end{gathered}
$$

Problem 6 (20pts) Let

$$
u=\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]
$$

and $W=\operatorname{span}\{u\}$. What is the dimension of W^{\perp}, the orthogonal complement of W. We use the fact that

$$
W+W^{\perp}=3 \Longrightarrow W^{\perp}=3-1
$$

since $\operatorname{dim}(W)=1$.

Problem 7 (20pts) Let A be a 7×5 matrix. What is the smallest possible dimension of $[\operatorname{colsp}(A)]^{\perp}$?

We use the fact that

$$
W+W^{\perp}=7
$$

given $W=\operatorname{dim}(\operatorname{colsp}(A))$, since the column vectors are in \mathbb{R}^{7}. If A is a 7×5 matrix, then the maximum number of linearly independent column vectors will be 5 , this means the dimension of the column space will be at most 5 as well and so $\left.\operatorname{dim}\left([\operatorname{colsp}(A)]^{\perp}\right) \geq 2\right)$.

Problem 8 (20pts) Let

$$
u_{1}=\left[\begin{array}{c}
3 \\
-3 \\
0
\end{array}\right], u_{2}=\left[\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right], u_{3}=\left[\begin{array}{l}
1 \\
1 \\
4
\end{array}\right] \text {, and } x=\left[\begin{array}{c}
5 \\
-3 \\
2
\end{array}\right] .
$$

Express x as a linear combination of $\left\{u_{1}, u_{2}, u_{3}\right\}$. For this problem we compute the coefficients such that

$$
c_{1}\left[\begin{array}{c}
3 \\
-3 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right]+c_{3}\left[\begin{array}{l}
1 \\
1 \\
4
\end{array}\right]=\left[\begin{array}{c}
5 \\
-3 \\
2
\end{array}\right] .
$$

since the vectors are orthogonal it follows that

$$
\begin{gather*}
c_{i}=\frac{u_{i}^{T} x}{u_{i}^{T} u_{i}} \\
c_{1}=\frac{u_{1} \cdot x}{u_{1} \cdot u_{1}}=\frac{24}{18} \tag{5}\\
c_{2}=\frac{u_{2} \cdot x}{u_{2} \cdot u_{2}}=\frac{2}{9} \tag{6}\\
c_{3}=\frac{u_{3} \cdot x}{u_{3} \cdot u_{3}}=\frac{10}{18} \tag{7}
\end{gather*}
$$

Problem 9 (20pts) Let

$$
W=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]\right\} \text { and } \vec{y}=\left[\begin{array}{c}
2 \\
-5 \\
3
\end{array}\right]
$$

Find $\operatorname{proj}_{W} \vec{y}$.
We use the fact that the vectors are orthogonal. Let

$$
u_{1}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] \text { and } u_{2}=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]
$$

then

$$
\begin{aligned}
\operatorname{proj}_{W} \vec{y} & =\frac{u_{1} \cdot \vec{y}}{u_{1} \cdot u_{1}} u_{1}+\frac{u_{2} \cdot \vec{y}}{u_{2} \cdot u_{2}} u_{2} \\
& =\frac{3}{6}\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]+\frac{-6}{3}\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-1.5 \\
-1.5 \\
3
\end{array}\right]
\end{aligned}
$$

*5pts for submission

