AMS10 HW7

Problem 1 Let

$$
A=\left[\begin{array}{ccc}
3 / \sqrt{18} & 2 / 3 & 1 / \sqrt{18} \tag{1}\\
-3 / \sqrt{18} & 2 / 3 & 1 / \sqrt{18} \\
0 & -1 / 3 & 4 / \sqrt{18}
\end{array}\right] .
$$

a. Compute $A^{T} A$.
b. What is A^{-1} ?

Problem 2 Consider the system $A \vec{x}=\vec{b}$ for

$$
A=\left[\begin{array}{ccc}
0 & 0 & 4 \tag{2}\\
2 & 3 & -1 \\
0 & 1 & 8 \\
2 & 4 & 7 \\
4 & 7 & 6
\end{array}\right], \quad \vec{b}=\left[\begin{array}{c}
-1 \\
-3 \\
0 \\
-2 \\
-5
\end{array}\right]
$$

a. Find the least-square solution.
b. Let $W=\operatorname{colsp}(A)$. Find an orthogonal basis using the Gram-Schmidt process.
c. Find $\operatorname{proj}_{W} \vec{b}$ and show that it is equal to $A \hat{x}$, where \hat{x} is the least-square solution.

Problem 3 Let

$$
A=\left[\begin{array}{ccc}
5 & -4 & -2 \tag{3}\\
-4 & 5 & 2 \\
-2 & 2 & 2
\end{array}\right]
$$

a. Find the eigenvectors of A.
b. Find an orthogonal set in the eigenspace for any repeated eigenvalues.
c. Find P and D that orthogonally diagonalize A. Note that since P is an orthogonal matrix $P^{-1}=P^{T}$.

