Problem 1 Let
\[A = \begin{bmatrix}
\frac{3}{\sqrt{18}} & 2/3 & 1/\sqrt{18} \\
-3/\sqrt{18} & 2/3 & 1/\sqrt{18} \\
0 & -1/3 & 4/\sqrt{18}
\end{bmatrix}. \] (1)

a. Compute \(A^T A \).
b. What is \(A^{-1} \)?

Problem 2 Consider the system \(A\vec{x} = \vec{b} \) for
\[A = \begin{bmatrix}
0 & 0 & 4 \\
2 & 3 & -1 \\
0 & 1 & 8 \\
2 & 4 & 7 \\
4 & 7 & 6
\end{bmatrix}, \quad \vec{b} = \begin{bmatrix}
-1 \\
-3 \\
0 \\
-2 \\
-5
\end{bmatrix}. \] (2)

a. Find the least-square solution.
b. Let \(W = \text{colsp}(A) \). Find an orthogonal basis using the Gram-Schmidt process.
c. Find \(\text{proj}_W \vec{b} \) and show that it is equal to \(A\hat{x} \), where \(\hat{x} \) is the least-square solution.

Problem 3 Let
\[A = \begin{bmatrix}
5 & -4 & -2 \\
-4 & 5 & 2 \\
-2 & 2 & 2
\end{bmatrix}. \] (3)

a. Find the eigenvectors of \(A \).
b. Find an orthogonal set in the eigenspace for any repeated eigenvalues.
c. Find \(P \) and \(D \) that orthogonally diagonalize \(A \). Note that since \(P \) is an orthogonal matrix \(P^{-1} = P^T \).