AMS10 HW8 - Solutions

Problem 1 Let

$$
u=\left[\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right], v=\left[\begin{array}{c}
-3 \\
2 \\
2
\end{array}\right]
$$

Compute the following quantities.
a. $u^{T} v$

$$
[13-2]\left[\begin{array}{c}
-3 \\
2 \\
2
\end{array}\right]=1 \cdot(-3)+3 \cdot(2)-2 \cdot(2)=-1
$$

b. $v^{T} u$

$$
v^{T} u=u^{T} v=-1
$$

c. $\left(\frac{u^{T} u}{v^{T} u}\right) u$

$$
\begin{aligned}
& {[13-2]\left[\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right]=1 \cdot(1)+3 \cdot(9)-2 \cdot(-2)=14} \\
& \left(\frac{u^{T} u}{v^{T} u}\right) u=\left(\frac{14}{-1}\right) u=-14\left[\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right]=\left[\begin{array}{c}
-14 \\
-42 \\
28
\end{array}\right]
\end{aligned}
$$

d. $\|u-v\|$

$$
\begin{aligned}
& {\left[\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right]-\left[\begin{array}{c}
-3 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{c}
4 \\
1 \\
-4
\end{array}\right]} \\
& \|u-v\|=\sqrt{2+1^{1}+(-4)^{2}}=\sqrt{33}
\end{aligned}
$$

Problem 2 Determine if the following pair of vectors are orthogonal.

$$
\begin{gathered}
\left\{\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right],\left[\begin{array}{c}
2 \\
1 \\
2.5
\end{array}\right]\right\}, \\
{\left[\begin{array}{ll}
21-2]\left[\begin{array}{c}
2 \\
1 \\
2.5
\end{array}\right]= & 2 \cdot(2)+1 \cdot(1)-2 \cdot(2.5)=0 \text { orthogonal } \\
& \left\{\left[\begin{array}{c}
-3 \\
7 \\
4 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-8 \\
25 \\
-7
\end{array}\right]\right\}, \\
{[-3740]\left[\begin{array}{c}
1 \\
-8 \\
25 \\
-7
\end{array}\right]=-3 \cdot(1)+7 \cdot(-8)+4 \cdot(25)+0 \cdot-7=-41 \text { not orthogonal }}
\end{array} .\right.}
\end{gathered}
$$

$$
\begin{gathered}
\left\{\left[\begin{array}{c}
13 \\
-3 \\
-7 \\
4
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]\right\} \\
{[13-3-74]\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]=13 \cdot(0)-3 \cdot(0)-7 \cdot(0)+4 \cdot 0=0 \text { orthogonal }}
\end{gathered}
$$

Problem 3 Let $W=\operatorname{colsp}(A)$, where

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 4 \\
3 & 1
\end{array}\right]
$$

Find W^{\perp}, the orthogonal complement of W. We begin by taking the transpose of A and then finding the null space.

$$
\begin{gathered}
A^{T}=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 1
\end{array}\right] \\
A^{T} x=0 \Longrightarrow\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Longrightarrow\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
x_{1}=-2 x_{2} \\
x_{3}=0 . \\
x=\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right] \\
W^{\perp}=\operatorname{span}\{x\}
\end{gathered}
$$

Problem 4 Let

$$
u=\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right]
$$

and $W=\operatorname{span}\{u\}$. What is the dimension of W^{\perp}, the orthogonal complement of W. We use the fact that

$$
W+W^{\perp}=3 \Longrightarrow W^{\perp}=3-1
$$

since $\operatorname{dim}(W)=1$.

Problem 5 Let A be a 7×5 matrix. What is the smallest possible dimension of $[\operatorname{colsp}(A)]^{\perp}$?

We use the fact that

$$
W+W^{\perp}=7
$$

given $W=\operatorname{dim}(\operatorname{colsp}(A))$, since the column vectors are in \mathbb{R}^{7}. If A is a 7×5 matrix, then the maximum number of linearly independent column vectors will be 5 , this means the dimension of the column space will be at most 5 as well and so $\left.\operatorname{dim}\left([\operatorname{colsp}(A)]^{\perp}\right) \geq 2\right)$.

Problem 6 Let

$$
u_{1}=\left[\begin{array}{c}
3 \\
-3 \\
0
\end{array}\right], u_{2}=\left[\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right], u_{3}=\left[\begin{array}{l}
1 \\
1 \\
4
\end{array}\right], \text { and } x=\left[\begin{array}{c}
5 \\
-3 \\
2
\end{array}\right]
$$

Express x as a linear combination of $\left\{u_{1}, u_{2}, u_{3}\right\}$. For this problem we compute the coefficients such that

$$
c_{1}\left[\begin{array}{c}
3 \\
-3 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{c}
2 \\
2 \\
-1
\end{array}\right]+c_{3}\left[\begin{array}{l}
1 \\
1 \\
4
\end{array}\right]=\left[\begin{array}{c}
5 \\
-3 \\
2
\end{array}\right]
$$

since the vectors are orthogonal it follows that

$$
\begin{gather*}
c_{i}=\frac{u_{i}^{T} x}{u_{i}^{T} u_{i}} \\
c_{1}=\frac{u_{1} \cdot x}{u_{1} \cdot u_{1}}=\frac{24}{18} \tag{148}\\
c_{2}=\frac{u_{2} \cdot x}{u_{2} \cdot u_{2}}=\frac{2}{9} \tag{149}\\
c_{3}=\frac{u_{3} \cdot x}{u_{3} \cdot u_{3}}=\frac{10}{18} \tag{150}
\end{gather*}
$$

Problem 7 Let

$$
W=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]\right\} \text { and } \vec{y}=\left[\begin{array}{c}
2 \\
-5 \\
3
\end{array}\right]
$$

Find $\operatorname{proj}_{W} \vec{y}$.
We use the fact that the vectors are orthogonal. Let

$$
u_{1}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] \text { and } u_{2}=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]
$$

then

$$
\begin{aligned}
\operatorname{proj}_{W} \vec{y} & =\frac{u_{1} \cdot \vec{y}}{u_{1} \cdot u_{1}} u_{1}+\frac{u_{2} \cdot \vec{y}}{u_{2} \cdot u_{2}} u_{2} \\
& =\frac{3}{6}\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]+\frac{-6}{3}\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-1.5 \\
-1.5 \\
3
\end{array}\right]
\end{aligned}
$$

