AMS10 HWS - Solutions

Problem 1 Let

Compute the following quantities.
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Problem 2 Determine if the following pair of vectors are orthogonal.
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[—3740] ;58 =-3-(1)+7-(=8)+4-(25)+0-—7= —41 not orthogonal
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[13 —3 —74] =13-(0)—3-(0) = 7-(0) +4-0 = 0 orthogonal
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Problem 3 Let W = colsp(A), where

A=

W N =
o DN

Find W, the orthogonal complement of W. We begin by taking the transpose of A and then
finding the null space.
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r1 = *2:E2

T3 =

-2

T = 1

0
W = span{z}

Problem 4 Let

1
u = 1 ,

-2

and W = span{u}. What is the dimension of W+, the orthogonal complement of W. We use the
fact that

W+Wwt=3 = wt=3-1
since dim(W) = 1.

Problem 5 Let A be a 7 x 5 matrix. What is the smallest possible dimension of [colsp(A)]*?
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We use the fact that
W+wh=r1

given W = dim(colsp(A)), since the column vectors are in R7. If A is a 7 x 5 matrix, then the
maximum number of linearly independent column vectors will be 5, this means the dimension of
the column space will be at most 5 as well and so dim([colsp(A)]*) > 2).

Problem 6 Let
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up =\ =3 |, ug = 2 ,uz=|1]|,andx=| —3
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Express = as a linear combination of {u1,ug,us}. For this problem we compute the coefficients such
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since the vectors are orthogonal it follows that
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Problem 7 Let
1 1 2
W = span 1], 1 andy= | =5
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Find projy y.
We use the fact that the vectors are orthogonal. Let

1 1
up = | 1 | andug = 1
2 -1
then
.o, ur-y uz2 -y
projyy = u U
u (75} ug U9
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= 5 + 3 1 =] —1.5
2 -1 3

47



