## AMS10 Midterm Version A

Instructions: No calculators or electronic devices allowed. A maximum of one page of notes (front and back) allowed. IMPORTANT: Please use a $\# 2$ pencil and mark the correct test version on the scantron. Answer keys are different!

Table 1: Trig table

| $\theta$ | 0 | $\pi / 6$ | $\pi / 4$ | $\pi / 3$ | $-\pi / 6$ | $-\pi / 4$ | $-\pi / 3$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\arctan ()$ | 0 | $1 / \sqrt{3}$ | 1 | $\sqrt{3}$ | $-1 / \sqrt{3}$ | -1 | $-\sqrt{3}$ |

## Question 1.

If $A=\left[\begin{array}{cc}1 & -2 \\ 2 & 0\end{array}\right]$, what is the product $A A^{T}$, where $A^{T}=\left[\begin{array}{cc}1 & 2 \\ -2 & 0\end{array}\right]$ is the transpose?
a) $A A^{T}=\left[\begin{array}{ll}5 & 2 \\ 2 & 4\end{array}\right]$
b) $A A^{T}=\left[\begin{array}{cc}-3 & 2 \\ 2 & 4\end{array}\right]$
c) $A A^{T}=\left[\begin{array}{cc}-3 & 2 \\ 2 & 0\end{array}\right]$
d) $A A^{T}=\left[\begin{array}{ll}-3 & 2 \\ -4 & 4\end{array}\right]$

## Question 2.

If $A=\left[\begin{array}{cc}-10 & 0 \\ 0 & 1\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}5 \\ 4\end{array}\right]$, what is $A \vec{v}$ ?
a) $A \vec{v}=\left[\begin{array}{l}5 \\ 4\end{array}\right]$
b) $A \vec{v}=\left[\begin{array}{c}-50 \\ 4\end{array}\right]$
c) $A \vec{v}=-46$
d) $A \vec{v}=54$

## Question 3.

If $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{n \times p}$, then
a) $A B \in \mathbb{R}^{n \times p}$
b) $A B$ Does not exist
c) $A B \in \mathbb{R}^{m \times p}$
d) $A B \in \mathbb{R}^{m \times n}$

## Question 4.

Select all the matrices that are in echelon form?
а) $\left[\begin{array}{cccc}1 & 1 & 1 & 2 \\ 0 & 1 & 3 & 3 \\ 0 & 0 & 0 & -2\end{array}\right]$
b) $\left[\begin{array}{ccccc}1 & 1 & 0 & -10 & -9 \\ 0 & 0 & 1 & -7 & -7 \\ 0 & 0 & 2 & -14 & -14\end{array}\right]$
c) $\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3\end{array}\right]$
d) $\left[\begin{array}{cccc}0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 \\ 1 & 0 & 0 & 0\end{array}\right]$

## Question 5.

Consider a linear system $A \vec{x}=\vec{b}$ with 4 unknown variables $\vec{x}=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{T}$. The augmented matrix $M=[A \mid \vec{b}]$ has the reduced matrix $\left[\begin{array}{cccc:c}1 & 2 & 1 & 1 & 1 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$, what are the pivot variables?
a) $x_{1}$
b) $x_{3}, x_{2}$
c) 1,2
d) $x_{1}, x_{4}$
e) $x_{1}, x_{2}, x_{3}$

## Question 6.

Consider a linear system $A \vec{x}=\vec{b}$ with 4 unknown variables $\vec{x}=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{T}$. The augmented matrix $M=[A \mid \vec{b}]$ has the reduced matrix $\left[\begin{array}{llll:l}1 & 2 & 1 & 1 & 1 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$, what are the free variables?
a) $x_{1}$
b) $x_{3}, x_{2}$
c) 1,2
d) $x_{1}, x_{4}$
e) $x_{1}, x_{2}, x_{3}$

## Question 7.

Select all the matrices that are in row canonical form?
а) $\left[\begin{array}{cccc}1 & 1 & 1 & 2 \\ 0 & 1 & 3 & 3 \\ 0 & 0 & 0 & -2\end{array}\right]$
b) $\left[\begin{array}{ccccc}1 & 0 & 1 & -10 & -9 \\ 0 & 1 & 1 & -7 & -7 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
c) $\left[\begin{array}{cccc}1 & 2 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3\end{array}\right]$
d) $\left[\begin{array}{llll}1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0\end{array}\right]$

## Question 8.

How many solutions does $x^{20}=1$ have including complex solutions?
a) 20
b) 19
c) 1
d) 2

## Question 9.

Given the complex number $z=\sqrt{2}-i \sqrt{2}$, the absolute value of $z$ is
a) $2 \sqrt{2}$
b) $\sqrt{2}$
c) 2
d) 4

## Question 10.

Given the complex number $z=\sqrt{2}-i \sqrt{2}$, the argument of $z$ is
a) $\arctan (1)$
b) $\arctan (-1)$
c) $\arctan (-1)+\pi$
d) $\arctan (1)+\pi$

## Question 11.

Given the complex number $z=\sqrt{2}-i \sqrt{2}$, find the real and imaginary part of $z^{4}$
a) $\operatorname{Re}(z)=2^{4}$ and $\operatorname{Im}(z)=2^{4}$
b) $\operatorname{Re}(z)=-2^{4}$ and $\operatorname{Im}(z)=-2^{4}$
c) $\operatorname{Re}(z)=2^{4}$ and $\operatorname{Im}(z)=0$
d) $\operatorname{Re}(z)=-2^{4}$ and $\operatorname{Im}(z)=0$

## Question 12.

Given $A^{-1}=\left[\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right]$ solve $A \vec{x}=\vec{b}$ for $\vec{x}$, where $\vec{b}=[-2,1]^{T}$. Which of the following is a solution?
a) $\vec{x}=\left[\begin{array}{c}-4 \\ 1 / 2\end{array}\right]$
b) $\vec{x}=\left[\begin{array}{c}-4 \\ 1\end{array}\right]$
c) no solution
d) infinite solutions

## Question 13.

How many solutions does $A \vec{x}=\vec{b}$ have? The augmented matrix is $[A \mid b]=\left[\begin{array}{ccc:c}1 & 0 & 2 & -3 \\ 0 & 1 & 5 & 10 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 2 & 3\end{array}\right]$.
a) no solution
b) infinite solutions
c) insufficient information
d) one solution

## Question 14.

Given $[A \mid b]=\left[\begin{array}{ccc:c}-1 & 8 & 2 & -3 \\ 0 & 1 & 5 & 10 \\ 0 & 0 & 6 & 3\end{array}\right]$ how many solutions does $A \vec{x}=\vec{b}$ have?
a) no solution
b) infinite solutions
c) insufficient information
d) one solution

## Question 15.

Given $[A \mid b]=\left[\begin{array}{ccc:c}1 & 0 & 2 & -3 \\ 0 & 1 & 5 & 10 \\ 0 & 1 & 5 & 10\end{array}\right]$ how many solutions does $A \vec{x}=\vec{b}$ have?
a) no solution
b) infinite solutions
c) insufficient information
d) one solution

## Question 16.

Which of the following matrices can NOT be arrived at through a series of elementary operations on $A_{1}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ (i.e. is NOT row equivalent)? Hint: Apply Gaussian elimination techniques.
a) $A_{2}=\left[\begin{array}{ll}2 & 1 \\ 4 & 3\end{array}\right]$
b) $A_{2}=\left[\begin{array}{cc}1 & 2 \\ 0 & -2\end{array}\right]$
c) $A_{2}=\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]$
d) $A_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

## Question 17.

What is the inverse of $A=\left[\begin{array}{cc}1 & 2 \\ 0 & -2\end{array}\right]$ ?
a) $A^{-1}=\left[\begin{array}{cc}-2 & -2 \\ 0 & 1\end{array}\right]$
b) $A^{-1}=\left[\begin{array}{cc}1 & 1 \\ 0 & 1 / 2\end{array}\right]$
c) $A^{-1}=\left[\begin{array}{cc}1 & 1 \\ 0 & -1 / 2\end{array}\right]$
d) $A^{-1}=\left[\begin{array}{cc}1 & 1 / 2 \\ 0 & -1 / 2\end{array}\right]$

## Question 18.

Select all the sets of vectors that are linearly independent?
a) $\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$
b) $\left\{\left[\begin{array}{c}1 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 4\end{array}\right]\right\}$
c) $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right], 2\left[\begin{array}{l}1 \\ 0\end{array}\right]-3\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$
d) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 4 \\ 1\end{array}\right]\right\}$

## Question 19.

Which of the following matrices has $\operatorname{det}(A)=0$ ? Select all that apply.
a) $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1\end{array}\right]$
b) $A=\left[\begin{array}{cc}1 & -6 \\ 1 & 1\end{array}\right]$
c) $. A=\left[\begin{array}{ccc}-1 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1\end{array}\right]$
d) $A=-8$

## Question 20.

Given a matrix: $B=\left[\begin{array}{ccc}1 & 0 & -2 \\ 2 & \beta & 2 \beta \\ -4 & 1 & 0\end{array}\right]$. Which value of $\beta$ makes $B$ non-invertible?
a) $-\frac{1}{10}$
b) $-\frac{1}{2}$
c) $-\frac{2}{5}$
d) $-\frac{1}{5}$

## Question 21.

Vector $\vec{v}=[-1,1]^{T}$ is a unique linear combination of what set? Select all that apply.
a) $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$
b) $\left\{\left[\begin{array}{l}5 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$
c) $\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{c}-4 \\ 1\end{array}\right]\right\}$
d) $\left\{\left[\begin{array}{l}4 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 2\end{array}\right]\right\}$

## Question 22.

Vector $\vec{v}=[5,8]^{T}$ is in the span of what set? Select all that apply.
a) $\left\{\left[\begin{array}{l}3 \\ 2\end{array}\right],\left[\begin{array}{c}4 \\ -1\end{array}\right]\right\}$
b) $\left\{\left[\begin{array}{l}5 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$
c) $\left\{\left[\begin{array}{l}1 \\ 4\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$
d) $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$

## Question 23.

What is $\operatorname{dim}(\operatorname{rowsp}(A))$, where $A=\left[\begin{array}{llll}1 & 0 & 2 & 2 \\ 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 3\end{array}\right]$ ?
a) 1
b) 2
c) 3
d) 4

## Question 24.

What is $\operatorname{dim}(\operatorname{colsp}(A))$, where $A=\left[\begin{array}{llll}1 & 0 & 0 & 5 \\ 8 & 1 & 0 & 6 \\ 3 & 0 & 2 & 2\end{array}\right]$ ?
a) 1
b) 2
c) 3
d) 4

## Question 25.

Select all matrices below that have $\operatorname{dim}(\operatorname{colsp}(A))=2$.
a) $A=\left[\begin{array}{cccc}1 & 0 & 2 & -3 \\ 0 & 1 & 5 & 10 \\ 0 & 0 & 0 & 0\end{array}\right]$
b) $A=\left[\begin{array}{cccc}1 & 0 & 2 & -3 \\ 0 & 1 & 5 & 10 \\ 1 & 0 & 2 & -3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
c) $A=\left[\begin{array}{lllll}1 & 0 & 2 & -3 & 1 \\ 2 & 0 & 4 & -6 & 2\end{array}\right]$

## Question 26.

Select all matrices below that have $\operatorname{colsp}(A)=\mathbb{R}^{2}$ ?
a) $A=\left[\begin{array}{ccc}1 & -2 & 3 \\ 0 & 1 & 5\end{array}\right]$
b) $A=\left[\begin{array}{cc}1 & -1 \\ -3 & 3\end{array}\right]$
c) $A=\left[\begin{array}{cccc}1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 10 \\ 0 & 0 & 0 & 0\end{array}\right]$
d) $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$

## Question 27.

What is the rank of matrix $A=\left[\begin{array}{cccc}1 & 0 & 2 & 2 \\ 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 4\end{array}\right]$ ?
a) 1
b) 2
c) 3
d) 4

## Question 28.

Select all sets that serve as a basis for the span $\left(\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 5\end{array}\right]\right)$.
a) $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 5\end{array}\right]\right\}$
b) $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$
c) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]^{T},\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]^{T},\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]^{T}\right\}$
d) $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$

Question 29.
Select all sets that serve as a basis for $\operatorname{colsp}(A)$, where $A=\left[\begin{array}{cccc}1 & 0 & 2 & 2 \\ 0 & 1 & 5 & 0 \\ 0 & -1 & -5 & 0\end{array}\right]$ ?
a) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$
b) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 5 \\ 0\end{array}\right]\right\}$
c) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$
d) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]\right\}$

Question 30.
Given the rank-nullity theorem, what is the $\operatorname{dim}(\operatorname{Ker}(A))$ if $A=\left[\begin{array}{cccc}1 & 0 & 2 & 2 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 4\end{array}\right]$ ?
a) 0
b) 1
c) 2
d) 3
e) 4
*Scratch paper
*Scratch paper
*Scratch paper
*Scratch paper

