AMS10 Midterm Version A

Instructions: No calculators or electronic devices allowed. A maximum of one page of notes (front and back) allowed. IMPORTANT: Please use a #2 pencil and mark the correct test version on the scantron. Answer keys are different!

Table 1: Trig table

		,	,	,	$-\pi/6$,	,
arctan()	0	$1/\sqrt{3}$	1	$\sqrt{3}$	$-1/\sqrt{3}$	-1	$-\sqrt{3}$

Question 1.

If $A = \begin{bmatrix} 1 & -2 \\ 2 & 0 \end{bmatrix}$, what is the product AA^T , where $A^T = \begin{bmatrix} 1 & 2 \\ -2 & 0 \end{bmatrix}$ is the transpose?

a)
$$AA^T = \begin{bmatrix} 5 & 2 \\ 2 & 4 \end{bmatrix}$$

b)
$$AA^T = \begin{bmatrix} -3 & 2 \\ 2 & 4 \end{bmatrix}$$

c)
$$AA^T = \begin{bmatrix} -3 & 2 \\ 2 & 0 \end{bmatrix}$$

$$d) AA^T = \begin{bmatrix} -3 & 2 \\ -4 & 4 \end{bmatrix}$$

Question 2.

If $A = \begin{bmatrix} -10 & 0 \\ 0 & 1 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$, what is $A\vec{v}$?

a)
$$A\vec{v} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$

a)
$$A\vec{v} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$$
 b) $A\vec{v} = \begin{bmatrix} -50 \\ 4 \end{bmatrix}$ c) $A\vec{v} = -46$ d) $A\vec{v} = 54$

c)
$$A\vec{v} = -46$$

$$d) A\vec{v} = 54$$

Question 3.

If $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{n \times p}$, then

a)
$$AB \in \mathbb{R}^{n \times p}$$

b)
$$AB$$
 Does not exist c) $AB \in \mathbb{R}^{m \times p}$

c)
$$AB \in \mathbb{R}^{m \times p}$$

d)
$$AB \in \mathbb{R}^{m \times n}$$

Question 4.

Select all the matrices that are in echelon form?

a)
$$\left[\begin{array}{cccc} 1 & 1 & 1 & 2 \\ 0 & 1 & 3 & 3 \\ 0 & 0 & 0 & -2 \end{array} \right]$$

b)
$$\begin{bmatrix} 1 & 1 & 0 & -10 & -9 \\ 0 & 0 & 1 & -7 & -7 \\ 0 & 0 & 2 & -14 & -14 \end{bmatrix}$$

c)
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

$$d) \begin{bmatrix}
 0 & 1 & 0 & -1 \\
 0 & 0 & 1 & 3 \\
 1 & 0 & 0 & 0
 \end{bmatrix}$$

Question 5.

Consider a linear system $A\vec{x} = \vec{b}$ with 4 unknown variables $\vec{x} = [x_1, x_2, x_3, x_4]^T$. The augmented matrix $M = [A|\vec{b}]$ has the reduced matrix $\begin{bmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$, what are the pivot **variables**?

a) x_1

b) x_3, x_2

c) 1,2

d) x_1, x_4

e) x_1, x_2, x_3

Question 6.

Consider a linear system $A\vec{x} = \vec{b}$ with 4 unknown variables $\vec{x} = [x_1, x_2, x_3, x_4]^T$. The augmented matrix $M = [A|\vec{b}]$ has the reduced matrix $\begin{bmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$, what are the free **variables**?

a) x_1

b) x_3, x_2

c) 1,2

d) x_1, x_4

e) x_1, x_2, x_3

Question 7.

Select all the matrices that are in row canonical form?

a)
$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & 1 & 3 & 3 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$

b)
$$\begin{bmatrix} 1 & 0 & 1 & -10 & -9 \\ 0 & 1 & 1 & -7 & -7 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$c) \left[\begin{array}{cccc} 1 & 2 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 \end{array} \right]$$

$$d) \begin{bmatrix}
 1 & 2 & 0 & 1 \\
 0 & 0 & 1 & 2 \\
 0 & 0 & 0 & 0
 \end{bmatrix}$$

Question 8.

How many solutions does $x^{20} = 1$ have including complex solutions?

a) 20

b) 19

c) 1

d) 2

Question 9.

Given the complex number $z = \sqrt{2} - i\sqrt{2}$, the absolute value of z is

a) $2\sqrt{2}$

b) $\sqrt{2}$

c) 2

d) 4

Question 10.

Given the complex number $z = \sqrt{2} - i\sqrt{2}$, the argument of z is

a) $\arctan(1)$

b) $\arctan(-1)$

c) $\arctan(-1) + \pi$

d) $\arctan(1) + \pi$

Question 11.

Given the complex number $z = \sqrt{2} - i\sqrt{2}$, find the real and imaginary part of z^4

a)
$$Re(z) = 2^4$$
 and $Im(z) = 2^4$

b)
$$Re(z) = -2^4$$
 and $Im(z) = -2^4$

c)
$$Re(z) = 2^4$$
 and $Im(z) = 0$

d)
$$Re(z) = -2^4$$
 and $Im(z) = 0$

Question 12.

Given $A^{-1} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$ solve $A\vec{x} = \vec{b}$ for \vec{x} , where $\vec{b} = [-2, 1]^T$. Which of the following is a solution?

a)
$$\vec{x} = \begin{bmatrix} -4 \\ 1/2 \end{bmatrix}$$
 b) $\vec{x} = \begin{bmatrix} -4 \\ 1 \end{bmatrix}$ c) no solution d) infinite solutions

b)
$$\vec{x} = \begin{bmatrix} -4 \\ 1 \end{bmatrix}$$

Question 13.

How many solutions does $A\vec{x} = \vec{b}$ have? The augmented matrix is $[A|b] = \begin{bmatrix} 1 & 0 & 2 & -3 \\ 0 & 1 & 5 & 10 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 2 & 3 \end{bmatrix}$.

a) no solution

b) infinite solutions

c) insufficient information

d) one solution

Question 14.

Given $[A|b] = \begin{bmatrix} -1 & 8 & 2 & -3 \\ 0 & 1 & 5 & 10 \\ 0 & 0 & 6 & 3 \end{bmatrix}$ how many solutions does $A\vec{x} = \vec{b}$ have?

a) no solution

b) infinite solutions

c) insufficient information

d) one solution

Question 15.

Given $[A|b] = \begin{bmatrix} 1 & 0 & 2 & -3 \\ 0 & 1 & 5 & 10 \\ 0 & 1 & 5 & 10 \end{bmatrix}$ how many solutions does $A\vec{x} = \vec{b}$ have?

a) no solution

b) infinite solutions

c) insufficient information

d) one solution

Question 16.

Which of the following matrices can NOT be arrived at through a series of elementary operations on $A_1 = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ (i.e. is NOT row equivalent)? Hint: Apply Gaussian elimination techniques.

a)
$$A_2 = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}$$

b)
$$A_2 = \begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix}$$

c)
$$A_2 = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$$

$$d) A_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Question 17.

What is the inverse of $A = \begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix}$?

a)
$$A^{-1} = \begin{bmatrix} -2 & -2 \\ 0 & 1 \end{bmatrix}$$

b)
$$A^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1/2 \end{bmatrix}$$

c)
$$A^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & -1/2 \end{bmatrix}$$

d)
$$A^{-1} = \begin{bmatrix} 1 & 1/2 \\ 0 & -1/2 \end{bmatrix}$$

Question 18.

Select all the sets of vectors that are linearly independent?

$$\mathbf{a})\ \left\{ \left[\begin{array}{c} 0\\1\\0 \end{array}\right], \left[\begin{array}{c} 0\\0\\1 \end{array}\right], \left[\begin{array}{c} 0\\0\\0 \end{array}\right] \right\}$$

b)
$$\left\{ \begin{bmatrix} 1\\-1 \end{bmatrix}, \begin{bmatrix} 0\\4 \end{bmatrix} \right\}$$

c)
$$\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 1\\0 \end{bmatrix}, 2\begin{bmatrix} 1\\0 \end{bmatrix} - 3\begin{bmatrix} 1\\2 \end{bmatrix} \right\}$$

d)
$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 3\\4\\1 \end{bmatrix} \right\}$$

Question 19.

Which of the following matrices has det(A) = 0? Select all that apply.

a)
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 1 & -6 \\ 1 & 1 \end{bmatrix}$$

c)
$$A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$

d)
$$A = -8$$

Question 20.

Given a matrix: $B = \begin{bmatrix} 1 & 0 & -2 \\ 2 & \beta & 2\beta \\ -4 & 1 & 0 \end{bmatrix}$. Which value of β makes B non-invertible?

a)
$$-\frac{1}{10}$$

b)
$$-\frac{1}{2}$$

c)
$$-\frac{2}{5}$$

d)
$$-\frac{1}{5}$$

Question 21.

Vector $\vec{v} = [-1, 1]^T$ is a **unique** linear combination of what set? Select all that apply.

$$\mathbf{a})\ \left\{\left[\begin{array}{c}1\\0\end{array}\right],\left[\begin{array}{c}0\\1\end{array}\right],\left[\begin{array}{c}0\\0\end{array}\right]\right\}$$

b)
$$\left\{ \begin{bmatrix} 5\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$$

c)
$$\left\{ \begin{bmatrix} -1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} -4\\1 \end{bmatrix} \right\}$$

$$d) \left\{ \left[\begin{array}{c} 4\\1 \end{array} \right], \left[\begin{array}{c} -1\\2 \end{array} \right] \right\}$$

Question 22.

Vector $\vec{v} = [5, 8]^T$ is in the span of what set? Select all that apply.

a)
$$\left\{ \begin{bmatrix} 3\\2 \end{bmatrix}, \begin{bmatrix} 4\\-1 \end{bmatrix} \right\}$$

b)
$$\left\{ \begin{bmatrix} 5\\2 \end{bmatrix}, \begin{bmatrix} 0\\0 \end{bmatrix} \right\}$$

c)
$$\left\{ \begin{bmatrix} 1\\4 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$$

$$d) \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$$

Question 23.

What is $\dim(rowsp(A))$, where $A = \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$?

a) 1

b) 2

c) 3

d) 4

Question 24.

What is $\dim(colsp(A))$, where $A = \begin{bmatrix} 1 & 0 & 0 & 5 \\ 8 & 1 & 0 & 6 \\ 3 & 0 & 2 & 2 \end{bmatrix}$?

a) 1

b) 2

c) 3

d) 4

Question 25.

Select all matrices below that have dim(colsp(A)) = 2.

a)
$$A = \begin{bmatrix} 1 & 0 & 2 & -3 \\ 0 & 1 & 5 & 10 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

a)
$$A = \begin{bmatrix} 1 & 0 & 2 & -3 \\ 0 & 1 & 5 & 10 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 b) $A = \begin{bmatrix} 1 & 0 & 2 & -3 \\ 0 & 1 & 5 & 10 \\ 1 & 0 & 2 & -3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ c) $A = \begin{bmatrix} 1 & 0 & 2 & -3 & 1 \\ 2 & 0 & 4 & -6 & 2 \end{bmatrix}$

c)
$$A = \begin{bmatrix} 1 & 0 & 2 & -3 & 1 \\ 2 & 0 & 4 & -6 & 2 \end{bmatrix}$$

Question 26.

Select all matrices below that have $colsp(A) = \mathbb{R}^2$?

a)
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & 5 \end{bmatrix}$$

b)
$$A = \begin{bmatrix} 1 & -1 \\ -3 & 3 \end{bmatrix}$$

c)
$$A = \begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 10 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{d}) \ A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{array} \right]$$

Question 27.

What is the rank of matrix $A = \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}$?

Question 28.

Select all sets that serve as a basis for the span $\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 5 \end{pmatrix}$.

a)
$$\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 2\\5 \end{bmatrix} \right\}$$

b)
$$\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0 \end{bmatrix} \right\}$$

c)
$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}^T, \begin{bmatrix} 0\\1\\0 \end{bmatrix}^T, \begin{bmatrix} 0\\0\\1 \end{bmatrix}^T \right\}$$

d)
$$\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$$

Question 29.

Select all sets that serve as a basis for colsp(A), where $A = \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 5 & 0 \\ 0 & -1 & -5 & 0 \end{bmatrix}$?

a)
$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

$$b) \left\{ \begin{bmatrix} 1\\0\\2\\2 \end{bmatrix}, \begin{bmatrix} 0\\1\\5\\0 \end{bmatrix} \right\}$$

$$c) \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$$

$$d) \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1 \end{bmatrix} \right\}$$

Question 30.

Given the rank-nullity theorem, what is the $\dim(Ker(A))$ if $A = \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}$?

- a) 0
- b) 1
- c) 2
- d) 3
- e) 4