AMS10 Midterm Version B

Instructions: No calculators or electronic devices allowed. A maximum of one page of notes (front and back) allowed. IMPORTANT: Please use a #2 pencil and mark the correct test version on the scantron. Answer keys are different!

Table	1:	Trig	table
racio	. .	S	00010

θ	0	$\pi/6$	$\pi/4$	$\pi/3$	$-\pi/6$	$-\pi/4$	$-\pi/3$
arctan()	0	$1/\sqrt{3}$	1	$\sqrt{3}$	$-1/\sqrt{3}$	-1	$-\sqrt{3}$

Question 1.

How many solutions does $x^{20} = 1$ have including complex solutions?

Question 2.

Given the complex number $z = \sqrt{2} - i\sqrt{2}$, the absolute value of z is

a) $2\sqrt{2}$ b) $\sqrt{2}$ c) 2

d) 4

Question 3.

Given the complex number $z = \sqrt{2} - i\sqrt{2}$, the argument of z is

- a) $\arctan(1)$ b) $\arctan(-1)$ c) $\arctan(-1) + \pi$
- d) $\arctan(1) + \pi$

Question 4.

Given the complex number $z = \sqrt{2} - i\sqrt{2}$, find the real and imaginary part of z^4

a) $Re(z) = 2^4$ and $Im(z) = 2^4$ b) $Re(z) = -2^4$ and $Im(z) = -2^4$ c) $Re(z) = 2^4$ and Im(z) = 0d) $Re(z) = -2^4$ and Im(z) = 0

Question 5.

If
$$A = \begin{bmatrix} 1 & -2 \\ 2 & 0 \end{bmatrix}$$
, what is the product AA^T , where $A^T = \begin{bmatrix} 1 & 2 \\ -2 & 0 \end{bmatrix}$ is the transpose?
a) $AA^T = \begin{bmatrix} 5 & 2 \\ 2 & 4 \end{bmatrix}$
b) $AA^T = \begin{bmatrix} -3 & 2 \\ 2 & 4 \end{bmatrix}$
c) $AA^T = \begin{bmatrix} -3 & 2 \\ 2 & 0 \end{bmatrix}$
d) $AA^T = \begin{bmatrix} -3 & 2 \\ -4 & 4 \end{bmatrix}$

Question 6.
If
$$A = \begin{bmatrix} -10 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$, what is $A\vec{v}$?
a) $A\vec{v} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$ b) $A\vec{v} = \begin{bmatrix} -50 \\ 4 \end{bmatrix}$ c) $A\vec{v} = -46$ d) $A\vec{v} = 54$

Question 7.

If $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{n \times p}$, then

a) $AB \in \mathbb{R}^{n \times p}$	b) AB Does not exist	c) $AB \in \mathbb{R}^{m \times p}$	d) $AB \in \mathbb{R}^{m \times n}$
-------------------------------------	------------------------	-------------------------------------	-------------------------------------

Question 8.

Select all the matrices that are in echelon form?

a)	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	$egin{array}{c} 1 \\ 1 \\ 0 \end{array}$	$egin{array}{c} 1 \\ 3 \\ 0 \end{array}$	$\begin{bmatrix} 2\\ 3\\ -2 \end{bmatrix}$	b) $\begin{bmatrix} 1 & 1 & 0 & -10 & -9 \\ 0 & 0 & 1 & -7 & -7 \\ 0 & 0 & 2 & -14 & -1 \end{bmatrix}$	$\left[\begin{array}{c} 3\\7\\4 \end{array}\right]$
c)	$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$	$egin{array}{c} 0 \ 1 \ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \end{array}$	$\begin{bmatrix} 0\\ -1\\ 3 \end{bmatrix}$	d) $\begin{bmatrix} 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 \\ 1 & 0 & 0 & 0 \end{bmatrix}$	

Question 9.

Consider a linear system $A\vec{x} = \vec{b}$ with 4 unknown variables $\vec{x} = [x_1, x_2, x_3, x_4]^T$. The augmented matrix $M = [A|\vec{b}]$ has the reduced matrix $\begin{bmatrix} 1 & 2 & 1 & 1 & | & 1 \\ 0 & 0 & 0 & 2 & | & 1 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$, what are the pivot variables? a) x_1 b) x_3, x_2 c) 1,2 d) x_1, x_4 e) x_1, x_2, x_3

Question 10.

Consider a linear system $A\vec{x} = \vec{b}$ with 4 unknown variables $\vec{x} = [x_1, x_2, x_3, x_4]^T$. The augmented matrix $M = [A|\vec{b}]$ has the reduced matrix $\begin{bmatrix} 1 & 2 & 1 & 1 & | & 1 \\ 0 & 0 & 0 & 2 & | & 1 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$, what are the free **variables**? a) x_1 b) x_3, x_2 c) 1,2

- d) x_1, x_4 e) x_1, x_2, x_3

Question 11.

Select all the matrices that are in row canonical form?

a) [$\begin{array}{c} 1 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 1 \\ 1 \\ 0 \end{array}$	$egin{array}{c} 1 \\ 3 \\ 0 \end{array}$	$\begin{bmatrix} 2\\ 3\\ -2 \end{bmatrix}$	b) [$\begin{array}{c} 1 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	1 1 0	$-10 \\ -7 \\ 0$	$ \begin{array}{c} -9 \\ -7 \\ 0 \end{array} $
c)	$\begin{array}{c} 1 \\ 0 \\ 0 \end{array}$	$2 \\ 1 \\ 0$	$egin{array}{c} 0 \\ 0 \\ 1 \end{array}$	$\begin{bmatrix} 0\\ -1\\ 3 \end{bmatrix}$	d) [$\begin{array}{c} 1 \\ 0 \\ 0 \end{array}$	$2 \\ 0 \\ 0$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	$\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$	

Question 12.

Which of the following matrices can NOT be arrived at through a series of elementary operations on $A_1 = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ (i.e. is NOT row equivalent)? Hint: Apply Gaussian elimination techniques.

a)
$$A_2 = \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix}$$

b) $A_2 = \begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix}$
c) $A_2 = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$
d) $A_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Question 13.

What is the inverse of $A = \begin{bmatrix} 1 & 2 \\ 0 & -2 \end{bmatrix}$?

a)
$$A^{-1} = \begin{bmatrix} -2 & -2 \\ 0 & 1 \end{bmatrix}$$

b) $A^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & 1/2 \end{bmatrix}$
c) $A^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & -1/2 \end{bmatrix}$
d) $A^{-1} = \begin{bmatrix} 1 & 1/2 \\ 0 & -1/2 \end{bmatrix}$

Question 14.

Given $A^{-1} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$ solve $A\vec{x} = \vec{b}$ for \vec{x} , where $\vec{b} = [-2, 1]^T$. Which of the following is a solution?

a)
$$\vec{x} = \begin{bmatrix} -4 \\ 1/2 \end{bmatrix}$$
 b) $\vec{x} = \begin{bmatrix} -4 \\ 1 \end{bmatrix}$ c) no solution d) infinite solutions

Question 15.

How many solutions does $A\vec{x} = \vec{b}$ have? The augmented matrix is [A|b] =

$$= \left[\begin{array}{rrrrr} 1 & 0 & 2 & -3 \\ 0 & 1 & 5 & 10 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 2 & 3 \end{array} \right].$$

a) no solution

- b) infinite solutions
- c) insufficient information d) one solution

Question 16.

Given
$$[A|b] = \begin{bmatrix} -1 & 8 & 2 & | & -3 \\ 0 & 1 & 5 & | & 10 \\ 0 & 0 & 6 & | & 3 \end{bmatrix}$$
 how many solutions does $A\vec{x} = \vec{b}$ have?
a) no solution
b) infinite solutions
c) insufficient information
d) one solution

Question 17.
Given
$$[A|b] = \begin{bmatrix} 1 & 0 & 2 & | & -3 \\ 0 & 1 & 5 & | & 10 \\ 0 & 1 & 5 & | & 10 \end{bmatrix}$$
 how many solutions does $A\vec{x} = \vec{b}$ have?
a) no solution b) infinite solutions

c) insufficient information d) one solution

Question 18.

Vector $\vec{v} = [-1, 1]^T$ is a **unique** linear combination of what set? Select all that apply.

a) $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0 \end{bmatrix} \right\}$ b) $\left\{ \begin{bmatrix} 5\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$ c) $\left\{ \begin{bmatrix} -1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} -4\\1 \end{bmatrix} \right\}$ d) $\left\{ \begin{bmatrix} 4\\1 \end{bmatrix}, \begin{bmatrix} -1\\2 \end{bmatrix} \right\}$

Question 19.

Vector $\vec{v} = [5, 8]^T$ is in the span of what set? Select all that apply.

a)
$$\left\{ \begin{bmatrix} 3\\2 \end{bmatrix}, \begin{bmatrix} 4\\-1 \end{bmatrix} \right\}$$

b) $\left\{ \begin{bmatrix} 5\\2 \end{bmatrix}, \begin{bmatrix} 0\\0 \end{bmatrix} \right\}$
c) $\left\{ \begin{bmatrix} 1\\4 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$
d) $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$

Question 20.

Select all matrices below that have dim(colsp(A)) = 2.

a)
$$A = \begin{bmatrix} 1 & 0 & 2 & -3 \\ 0 & 1 & 5 & 10 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 b) $A = \begin{bmatrix} 1 & 0 & 2 & -3 \\ 0 & 1 & 5 & 10 \\ 1 & 0 & 2 & -3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ c) $A = \begin{bmatrix} 1 & 0 & 2 & -3 & 1 \\ 2 & 0 & 4 & -6 & 2 \end{bmatrix}$

Question 21.

Select all matrices below that have $colsp(A) = \mathbb{R}^2$?

a)
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & 5 \end{bmatrix}$$

b) $A = \begin{bmatrix} 1 & -1 \\ -3 & 3 \end{bmatrix}$
c) $A = \begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 10 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
d) $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$

Question 22.

What is the rank of matrix
$$A = \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$
?
a) 1 b) 2
c) 3 d) 4

Question 23.

Select all sets that serve as a basis for the span $\left(\begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 2\\5 \end{bmatrix} \right)$. a) $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 2\\5 \end{bmatrix} \right\}$ b) $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0 \end{bmatrix} \right\}$ c) $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}^T, \begin{bmatrix} 0\\1\\0 \end{bmatrix}^T, \begin{bmatrix} 0\\0\\1 \end{bmatrix}^T \right\}$ d) $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$

Question 24.

Select all sets that serve as a basis for colsp(A), where $A = \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 5 & 0 \\ 0 & -1 & -5 & 0 \end{bmatrix}$?

a)
$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

b)
$$\left\{ \begin{bmatrix} 1\\0\\2\\2 \end{bmatrix}, \begin{bmatrix} 0\\1\\5\\0 \end{bmatrix} \right\}$$

c)
$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1 \end{bmatrix} \right\}$$

d)
$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1 \end{bmatrix} \right\}$$

Question 25.

What is dim(
$$rowsp(A)$$
), where $A = \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$?
a) 1 b) 2
c) 3 d) 4

Question 26.

What is dim(
$$colsp(A)$$
), where $A = \begin{bmatrix} 1 & 0 & 0 & 5 \\ 8 & 1 & 0 & 6 \\ 3 & 0 & 2 & 2 \end{bmatrix}$?
a) 1 b) 2
c) 3 d) 4

Question 27.

Given the rank-	nullity theorem, w	hat is the $\dim(Ker(A$	(h)) if $A = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	0 0 0 0	$2 \\ 5 \\ 0$	2 0 4	?	
a) 0	b) 1	c) 2	d) 3				e) 4	4

Question 28.

Select all the sets of vectors that are linearly independent?

a)
$$\left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix} \right\}$$
 b)
$$\left\{ \begin{bmatrix} 1\\-1 \end{bmatrix}, \begin{bmatrix} 0\\4 \end{bmatrix} \right\}$$

c)
$$\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 1\\0 \end{bmatrix}, 2\begin{bmatrix} 1\\0 \end{bmatrix}, 2\begin{bmatrix} 1\\2 \end{bmatrix} \right\}$$
 d)
$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 3\\4\\1 \end{bmatrix} \right\}$$

Question 29.

Which of the following matrices has det(A) = 0? Select all that apply.

a)
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

b) $A = \begin{bmatrix} 1 & -6 \\ 1 & 1 \end{bmatrix}$
c) $A = \begin{bmatrix} -1 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix}$
d) $A = -8$

Question 30.

Given a matrix: $B = \begin{bmatrix} 1 & 0 & -2 \\ 2 & \beta & 2\beta \\ -4 & 1 & 0 \end{bmatrix}$. Which value of β makes B non-invertible? a) $-\frac{1}{10}$ b) $-\frac{1}{2}$

c)
$$-\frac{2}{5}$$
 d) $-\frac{1}{5}$