AMS10 Midterm: Version A

Instructions: No calculators or electronic devices allowed. A maximum of two pages of notes (front and back) allowed. IMPORTANT: Please use a #2 pencil and ParScore f-1712 scantron (red one). Do not begin the exam until instructed to do so. Please bubble in "A" under "Test Form."

Question 1.

How many complex solutions does $x^3 = 1$ have?

a) 1 b) 2 c) 0 d) 3

Question 2.

What is the complex exponential form of z = -1 + 5i?

a) $\sqrt{26}e^{i(\arctan(-5))}$ b) $\sqrt{26}e^{i(\arctan(-5)+\pi)}$ c) $\sqrt{24}e^{i(\arctan(-5)+\pi)}$ d) $\sqrt{26}e^{i(\arctan(-1/5))}$ e) $\sqrt{24}e^{i(\arctan(-5)+\pi)}$ f) $\sqrt{24}e^{i(\arctan(-5))}$

Question 3.

If
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -4 \\ 2 & 5 \end{bmatrix}$, what is the product AB ?
a) $AB = \begin{bmatrix} 2 & -4 \\ 2 & 6 \end{bmatrix}$
b) $AB = \begin{bmatrix} 1 & -4 \\ 2 & 5 \end{bmatrix}$
c) $AB = \begin{bmatrix} 1 & 0 & 1 & -4 \\ 0 & 1 & 2 & 5 \end{bmatrix}$
d) $AB = \begin{bmatrix} 1 & 2 \\ -4 & 5 \end{bmatrix}$

Question 4.

If
$$A = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, what is $A\vec{v}$?
a) $A\vec{v} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ b) $A\vec{v} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$ c) $A\vec{v} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$ d) $A\vec{v} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Question 5.

If $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, then

a) $AB \in \mathbb{R}^{n \times p}$ b) Does not exist c) $AB \in \mathbb{R}^{m \times p}$ d) $AB \in \mathbb{R}^{m \times n}$

Question 6.

Which of the following matrices is in echelon form?

a) $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 2\\ 3\\ -2 \end{bmatrix}$	b) $\begin{bmatrix} 1 & 1 & 0 & -10 & -9 \\ 0 & 0 & 1 & -7 & -7 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
c) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 0\\ -1\\ 3 \end{bmatrix}$	d) All of the above

Scratch page

Question 7.

Consider a linear system $A\vec{x} = \vec{b}$ with 4 unknown variables $\vec{x} = [x_1, x_2, x_3, x_4]^T$. The augmented matrix $M = [A|\vec{b}]$ has the reduced matrix $\begin{bmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & 1 & 3 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$, what are the pivot variables?

a) x_1 b) x_3, x_4 c) 1,1 e) x_2, x_3, x_4 (d) x_1, x_2 f) 3,2

Question 8.

Consider a linear system $A\vec{x} = \vec{b}$ with 4 unknown variables $\vec{x} = [x_1, x_2, x_3, x_4]^T$. The augmented matrix $M = [A|\vec{b}]$ has the reduced matrix $\begin{bmatrix} 1 & 2 & 1 & 1 & 1 \\ 0 & 1 & 3 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$, what are the free variables? b) x_3, x_4 a) x_1 c) 1,1 e) x_2, x_3, x_4 d) x_1, x_2 f) 3,2

Question 9.

Which of the following matrices is in row canonical form?

a)	$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$	$egin{array}{c} 1 \\ 1 \\ 0 \end{array}$	$egin{array}{c} 1 \\ 3 \\ 0 \end{array}$	$\begin{bmatrix} 2\\ 3\\ -2 \end{bmatrix}$		$-10 \\ -7 \\ 0$	$\begin{array}{c} -9 \\ -7 \\ 0 \end{array}$
c)	$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$	$2 \\ 1 \\ 0$	$egin{array}{c} 0 \\ 0 \\ 1 \end{array}$	$\begin{bmatrix} 0\\ -1\\ 3 \end{bmatrix}$	d) $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$	

Question 10.

What is the inverse of $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$? a) $A^{-1} = \begin{bmatrix} 1 & 1 & -1/4 \\ 0 & -1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ c) $A^{-1} = \begin{bmatrix} 1 & 1/2 & 1/4 \\ 0 & -1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

b)
$$A^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

d) $A^{-1} = \begin{bmatrix} 1 & 1 & -4 \\ 0 & -1/2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Scratch page

Question 11.

What is the row canonical form of
$$A = \begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 0 \end{bmatrix}$$
?
a) Already in row canonical form
b) $\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
c) $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
d) $\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$

Question 12.

Given
$$A^{-1} = \begin{bmatrix} 1 & -2 \\ 1/4 & 1 \end{bmatrix}$$
 solve $A\vec{x} = \vec{b}$ for $\vec{b} = [-2, 1]^T$.
(a) $\vec{x} = \begin{bmatrix} -4 \\ 1/2 \end{bmatrix}$ (b) $\vec{x} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ (c) no solution (d) infinite solutions

Question 13.

How many solutions does $A\vec{x} = \vec{b}$ have? The echelon form of the augmented matrix is $[A|b] = \begin{bmatrix} 1 & 0 & 2 & -3 \\ 0 & 1 & 5 & 10 \end{bmatrix}$.

0 0 0 3

a) no solutionb) infinite solutions

c) insufficient information d) one solution

Question 14.

Given $[A|b] = \begin{bmatrix} 1 & 0 & 2 & -3 \\ 0 & 0 & 5 & 10 \\ 0 & -1 & 6 & 3 \end{bmatrix}$ how many solutions does $A\vec{x} = \vec{b}$ have? a) no solution b) infinite solutions

c) insufficient information d) one solution

Question 15.

Given
$$[A|b] = \begin{bmatrix} 1 & 0 & 2 & -3 \\ 0 & 1 & 5 & 10 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 how many solutions does $A\vec{x} = \vec{b}$ have?
a) no solution
b) infinite solutions
c) insufficient information
d) one solution

Question 16.

Which of the following sets of vectors are independent?

a)
$$\left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0 \end{bmatrix} \right\}$$

b)
$$\left\{ \begin{bmatrix} 1\\-1 \end{bmatrix}, \begin{bmatrix} 0\\4 \end{bmatrix}, \begin{bmatrix} -2\\3 \end{bmatrix} \right\}$$

c)
$$\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\4 \end{bmatrix} \right\}$$

d)
$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$$

Question 17.

Vector $\vec{v} = [1, 0]^T$ is a linear combination of what set?

a) $\left\{ \begin{bmatrix} 10\\0 \end{bmatrix} \right\}$ b) $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0 \end{bmatrix} \right\}$ c) $\left\{ \begin{bmatrix} -1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$ d) All of the above

Question 18.

Vector $\vec{v} = [-1, 1]^T$ is a **unique** linear combination of what set?

a) $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0 \end{bmatrix} \right\}$ b) $\left\{ \begin{bmatrix} 5\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$ c) $\left\{ \begin{bmatrix} -1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} -4\\1 \end{bmatrix} \right\}$ d) All of the above

Question 19.

Vector $\vec{v} = [3, 2]^T$ is in the span of what set?

Question 20.

Which matrix below has $colsp(A) \in \mathbb{R}^5$?

c)
$$\begin{bmatrix} 1 & 0 & 2 & -3 & 1 \\ 0 & 1 & 5 & 10 & -1 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$

7

Scratch page

Question 21.

Which matrix below has $colsp(A) = \mathbb{R}^3$?

a)
$$\begin{bmatrix} 1 & -2 \\ -3 & 1 \\ 5 & 6 \end{bmatrix}$$

b) $\begin{bmatrix} 1 & -1 & 2 \\ -3 & 1 & -6 \\ 5 & 0 & 10 \end{bmatrix}$
c) $\begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 10 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
d) None of the above

Question 22.

What is the rank of matrix $A = \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 5 & 0 \\ 2 & 0 & 4 & 4 \end{bmatrix}$? a) 1 b) 2

c) 3 d) 4

Question 23.

Which of the following sets is a basis for rowsp(A), where $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 5 \end{bmatrix}$?

a) $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 2\\5 \end{bmatrix} \right\}$ c) $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}^T, \begin{bmatrix} 0\\1\\0 \end{bmatrix}^T, \begin{bmatrix} 0\\0\\1 \end{bmatrix}^T, \begin{bmatrix} 0\\0\\1 \end{bmatrix}^T, \begin{bmatrix} 0\\0\\0 \end{bmatrix}^T \right\}$ **b)** $\left\{ \begin{bmatrix} 1\\0\\2 \end{bmatrix}^T, \begin{bmatrix} 0\\1\\5 \end{bmatrix}^T \right\}$

d) None of the above

Question 24.

Which of the following sets is a basis for colsp(A), where $A = \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 5 & 0 \end{bmatrix}$?

a) $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0 \end{bmatrix} \right\}$ b) c) c) $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix}^T, \begin{bmatrix} 0\\1 \end{bmatrix}^T, \begin{bmatrix} -1\\1 \end{bmatrix}^T \right\}$ d) 1

b) $\left\{ \begin{bmatrix} 1\\0\\2\\2 \end{bmatrix}^T, \begin{bmatrix} 0\\1\\5\\0 \end{bmatrix}^T \right\}$

Question 25.

What is dim(rowsp(A)), where $A = \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 5 \end{bmatrix}$? a) 1 b) 2 c) 3 d) 4

Question 26.

What is $\dim(colsp(A))$, where $A =$	$\begin{bmatrix} 1\\ 8\\ 3\\ 0 \end{bmatrix}$	$egin{array}{c} 0 \\ 1 \\ 0 \\ 1 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 2 \\ 0 \end{array}$	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ 5 \end{bmatrix}$?
a) 1					b) 2
c) 3					<mark>d)</mark> 4

Question 27.

Given the rank-nullity theorem, what is the dim(Ker(A)) if $A = \begin{bmatrix} 1 & 0 & 2 & 2 \\ 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix}$? a) 0 b) 1 c) 2 d) 3 e) 4