AMS10 Midterm: Version B

Instructions: No calculators or electronic devices allowed. A maximum of two pages of notes (front and back) allowed. IMPORTANT: Please use a $\# 2$ pencil and ParScore f-1712 scantron (red one). Do not begin the exam until instructed to do so. Please bubble in "B" under "Test Form."

Question 1.

How many complex solutions does $x^{3}=1$ have?
a) 3
b) 1
c) 2
d) 0

Question 2.

What is the complex exponential form of $z=-1+5 i$?
a) $\sqrt{26} e^{i(\arctan (-5))}$
b) $\sqrt{26} e^{i(\arctan (-1 / 5))}$
c) $\sqrt{24} e^{i(\arctan (-1 / 5)+\pi)}$
d) $\sqrt{24} e^{i(\arctan (-5)+\pi)}$
e) $\sqrt{24} e^{i(\arctan (-5))}$
f) $\sqrt{26} e^{i(\arctan (-5)+\pi)}$

Question 3.

If $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -4 \\ 2 & 5\end{array}\right]$, what is the product $A B$?
a) $A B=\left[\begin{array}{cc}2 & -4 \\ 2 & 6\end{array}\right]$
b) $A B=\left[\begin{array}{cccc}1 & 0 & 1 & -4 \\ 0 & 1 & 2 & 5\end{array}\right]$
c) $A B=\left[\begin{array}{cc}1 & -4 \\ 2 & 5\end{array}\right]$
d) $A B=\left[\begin{array}{cc}1 & 2 \\ -4 & 5\end{array}\right]$

Question 4.

If $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$, what is $A \vec{v}$?
a) $A \vec{v}=\left[\begin{array}{l}3 \\ 3\end{array}\right]$
b) $A \vec{v}=\left[\begin{array}{l}4 \\ 1\end{array}\right]$
c) $A \vec{v}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
d) $A \vec{v}=\left[\begin{array}{l}2 \\ 2\end{array}\right]$

Question 5.

If $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$, then
a) $A B \in \mathbb{R}^{m \times p}$
b) $A B \in \mathbb{R}^{n \times p}$
c) $A B$ Does not exist
d) $A B \in \mathbb{R}^{m \times n}$

Question 6.

Which of the following matrices is in echelon form?
a) $\left[\begin{array}{cccc}1 & 1 & 1 & 2 \\ 0 & 1 & 3 & 3 \\ 0 & 0 & 0 & -2\end{array}\right]$
b) $\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3\end{array}\right]$
c) $\left[\begin{array}{ccccc}1 & 1 & 0 & -10 & -9 \\ 0 & 0 & 1 & -7 & -7 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
d) All of the above

Scratch page

Question 7.

Consider a linear system $A \vec{x}=\vec{b}$ with 4 unknown variables $\vec{x}=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{T}$. The augmented matrix $M=[A \mid \vec{b}]$ has the reduced matrix $\left[\begin{array}{ccccc}1 & 2 & 1 & 1 & 1 \\ 0 & 1 & 3 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$, what are the pivot variables?
a) 3,2
b) 1,1
c) x_{2}, x_{3}, x_{4}
d) x_{1}
e) x_{1}, x_{2}
f) x_{3}, x_{4}

Question 8.

Consider a linear system $A \vec{x}=\vec{b}$ with 4 unknown variables $\vec{x}=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{T}$. The augmented matrix $M=[A \mid \vec{b}]$ has the reduced matrix $\left[\begin{array}{ccccc}1 & 2 & 1 & 1 & 1 \\ 0 & 1 & 3 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$, what are the free variables?
a) 3,2
b) x_{1}
c) x_{2}, x_{3}, x_{4}
d) 1,1
e) x_{1}, x_{2}
f) x_{3}, x_{4}

Question 9.

Which of the following matrices is in row canonical form?
a) $\left[\begin{array}{cccc}1 & 2 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3\end{array}\right]$
b) $\left[\begin{array}{cccc}1 & 1 & 1 & 2 \\ 0 & 1 & 3 & 3 \\ 0 & 0 & 0 & -2\end{array}\right]$
c) $\left[\begin{array}{llll}1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0\end{array}\right]$
d) $\left[\begin{array}{ccccc}1 & 1 & 0 & -10 & -9 \\ 0 & 0 & 1 & -7 & -7 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

Question 10.

What is the inverse of $A=\left[\begin{array}{ccc}1 & 2 & 4 \\ 0 & -2 & 0 \\ 0 & 0 & 1\end{array}\right]$?
a) $A^{-1}=\left[\begin{array}{ccc}1 & 1 & -1 / 4 \\ 0 & -1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right]$
b) $A^{-1}=\left[\begin{array}{ccc}1 & 1 / 2 & 1 / 4 \\ 0 & -1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right]$
c) $A^{-1}=\left[\begin{array}{ccc}1 & 1 & -4 \\ 0 & -1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right]$
d) $A^{-1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Scratch page

Question 11.

What is the row canonical form of $A=\left[\begin{array}{cccc}1 & -1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 0\end{array}\right]$?
a) $\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0\end{array}\right]$
b) Already in row canonical form
c) $\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$
d) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$

Question 12.
Given $A^{-1}=\left[\begin{array}{cc}1 & -2 \\ 1 / 4 & 1\end{array}\right]$ solve $A \vec{x}=\vec{b}$ for $\vec{b}=[-2,1]^{T}$.
a) infinite solutions
b) $\vec{x}=\left[\begin{array}{c}-4 \\ 1 / 2\end{array}\right]$
c) no solution
d) $\vec{x}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$

Question 13.

How many solutions does $A \vec{x}=\vec{b}$ have? The echelon form of the augmented matrix is $[A \mid b]=$ $\left[\begin{array}{cccc}1 & 0 & 2 & -3 \\ 0 & 1 & 5 & 10 \\ 0 & 0 & 0 & 3\end{array}\right]$.
a) infinite solutions
b) insufficient information
c) no solution
d) one solution

Question 14.

Given $[A \mid b]=\left[\begin{array}{cccc}1 & 0 & 2 & -3 \\ 0 & 0 & 5 & 10 \\ 0 & -1 & 6 & 3\end{array}\right]$ how many solutions does $A \vec{x}=\vec{b}$ have?
a) infinite solutions
b) no solution
c) one solution
d) insufficient information

Question 15.

Given $[A \mid b]=\left[\begin{array}{cccc}1 & 0 & 2 & -3 \\ 0 & 1 & 5 & 10 \\ 0 & 0 & 0 & 0\end{array}\right]$ how many solutions does $A \vec{x}=\vec{b}$ have?
a) no solution
b) insufficient information
c) one solution
d) infinite solutions

Question 16.

Which of the following sets of vectors are independent?
a) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$
b) $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 4\end{array}\right]\right\}$
c) $\left\{\left[\begin{array}{c}1 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 4\end{array}\right],\left[\begin{array}{c}-2 \\ 3\end{array}\right]\right\}$
d) $\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$

Question 17.

Vector $\vec{v}=[1,0]^{T}$ is a linear combination of what set?
a) $\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$
b) $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$
c) $\left\{\left[\begin{array}{c}10 \\ 0\end{array}\right]\right\}$
d) All of the above

Question 18.

Vector $\vec{v}=[-1,1]^{T}$ is a unique linear combination of what set?
a) $\left\{\left[\begin{array}{l}5 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$
b) $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$
c) $\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{c}-4 \\ 1\end{array}\right]\right\}$
d) All of the above

Question 19.

Vector $\vec{v}=[3,2]^{T}$ is in the span of what set?
a) $\left\{\left[\begin{array}{l}3 \\ 2\end{array}\right],\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$
b) $\left\{\left[\begin{array}{l}2 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$
c) $\left\{\left[\begin{array}{l}1 \\ 5\end{array}\right],\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$
d) All of the above

Question 20.

Which matrix below has $\operatorname{colsp}(A) \in \mathbb{R}^{5}$?
a) $\left[\begin{array}{ccccc}1 & 0 & 2 & -3 & 1 \\ 0 & 1 & 5 & 10 & -1 \\ 0 & 0 & 0 & 0 & 3\end{array}\right]$
b) $\left[\begin{array}{cccc}1 & 0 & 2 & -3 \\ 0 & 1 & 5 & 10 \\ 0 & 0 & 0 & 0\end{array}\right]$
c) $\left[\begin{array}{cccc}1 & 0 & 2 & -3 \\ 0 & 1 & 5 & 10 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

Scratch page

Question 21.

Which matrix below has $\operatorname{colsp}(A)=\mathbb{R}^{3}$?
a) $\left[\begin{array}{ccc}1 & -1 & 2 \\ -3 & 1 & -6 \\ 5 & 0 & 10\end{array}\right]$
b) $\left[\begin{array}{cccc}1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 10 \\ 0 & 0 & 1 & 0\end{array}\right]$
c) $\left[\begin{array}{cc}1 & -2 \\ -3 & 1 \\ 5 & 6\end{array}\right]$
d) None of the above

Question 22.

What is the rank of matrix $A=\left[\begin{array}{llll}1 & 0 & 2 & 2 \\ 0 & 1 & 5 & 0 \\ 2 & 0 & 4 & 4\end{array}\right]$?
a) 2
b) 4
c) 3
d) 1

Question 23.

Which of the following sets is a basis for $\operatorname{rowsp}(A)$, where $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 5\end{array}\right]$?
a) $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 5\end{array}\right]\right\}$
b) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]^{T},\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]^{T},\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]^{T},\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]^{T}\right\}$
c) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right]^{T},\left[\begin{array}{l}0 \\ 1 \\ 5\end{array}\right]^{T}\right\}$
d) None of the above

Question 24.

Which of the following sets is a basis for $\operatorname{colsp}(A)$, where $A=\left[\begin{array}{llll}1 & 0 & 2 & 2 \\ 0 & 1 & 5 & 0\end{array}\right]$?
a) $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]^{T},\left[\begin{array}{l}0 \\ 1\end{array}\right]^{T},\left[\begin{array}{c}-1 \\ 1\end{array}\right]^{T}\right\}$
b) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 2\end{array}\right]^{T},\left[\begin{array}{l}0 \\ 1 \\ 5 \\ 0\end{array}\right]^{T}\right\}$
c) $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$
d) None of the above

Question 25.

What is $\operatorname{dim}(\operatorname{rowsp}(A))$, where $A=\left[\begin{array}{cccc}1 & 0 & 2 & 2 \\ 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 5\end{array}\right]$?
a) 2
b) 1
c) 4
d) 3

Question 26.

What is $\operatorname{dim}(\operatorname{colsp}(A))$, where $A=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 8 & 1 & 0 & 0 \\ 3 & 0 & 2 & 0 \\ 0 & 1 & 0 & 5\end{array}\right]$?
a) 4
b) 3
c) 2
d) 1

Question 27.

Given the rank-nullity theorem, what is the $\operatorname{dim}(\operatorname{Ker}(A))$ if $A=\left[\begin{array}{llll}1 & 0 & 2 & 2 \\ 0 & 1 & 5 & 0 \\ 0 & 0 & 0 & 4\end{array}\right]$?
a) 4
b) 2
c) 0
d) 3
e) 1

