Practice Problems

Question 1.

How many solutions does $x^{6}=4+2 i$ have
a) 6
b) 0
c) 1
d) 5

Question 2.

Which of the following is a cubed root of the complex number $-1-i$.
a) $2^{\frac{1}{6}} e^{i \arctan (1)}$
b) $\sqrt{2} e^{i(\arctan (1)-\pi)}$
c) $\sqrt{2} e^{i(\arctan (1)-\pi) / 3}$
d) $2^{\frac{1}{6}} e^{i(\arctan (1)-\pi+2 \pi) / 3}$

Question 3.

If $A=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & -4 \\ 2 & 5\end{array}\right]$, what is the product $A B$?
a) $A B=\left[\begin{array}{cc}2 & -5 \\ 1 & 6\end{array}\right]$
b) $A B=\left[\begin{array}{cc}-1 & -9 \\ 1 & 9\end{array}\right]$
c) $A B=\left[\begin{array}{cc}0 & -3 \\ 3 & 4\end{array}\right]$
d) $A B=\left[\begin{array}{cc}5 & -5 \\ -3 & 3\end{array}\right]$

Question 4.

If $A=\left[\begin{array}{ccc}2 & 0 & -3 \\ 0 & 1 & 4\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$, what is $A \vec{v} ?$
a) $A \vec{v}=\left[\begin{array}{l}2 \\ 2\end{array}\right]$
b) $A \vec{v}=\left[\begin{array}{c}-4 \\ 10\end{array}\right]$
c) $A \vec{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$
d) $A \vec{v}=\left[\begin{array}{c}-1 \\ 5\end{array}\right]$

Question 5.

If $A \in \mathbb{R}^{m \times n}$ then what is the dimension of $A^{T} A$
a) $m \times m$
b) Does not exist
c) $n \times n$
d) $m \times n$

Question 6.

Which of the following matrices is in echelon form?
а) $\left[\begin{array}{cccc}1 & 1 & 1 & 2 \\ 0 & 1 & 3 & 3 \\ 0 & 0 & 0 & -2\end{array}\right]$
b) $\left[\begin{array}{ccccc}1 & 1 & 0 & -10 & -9 \\ 0 & 0 & 1 & -7 & -7 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
c) $\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3\end{array}\right]$
d) All of the above

Question 7.

Consider a linear system $A \vec{x}=\vec{b}$ with 4 unknown variables $\vec{x}=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{T}$. The augmented matrix $M=[A \mid \vec{b}]$ has the reduced matrix $\left[\begin{array}{ccccc}0 & 2 & 1 & 1 & 1 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$, what are the pivot variables (basic variables)?
a) x_{1}, x_{3}
b) x_{2}, x_{4}
c) 2,1
d) 2,2

Question 8.

Consider a linear system $A \vec{x}=\vec{b}$ with 4 unknown variables $\vec{x}=\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{T}$. The augmented matrix $M=[A \mid \vec{b}]$ has the reduced matrix $\left[\begin{array}{ccccc}0 & 2 & 1 & 1 & 1 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$, what are the free variables?
a) x_{1}, x_{3}
b) x_{2}, x_{4}
c) 0,1
d) 1,1

Question 9.

Which of the following matrices is in row canonical form?
a) $\left[\begin{array}{cccc}1 & 1 & 1 & 2 \\ 0 & 1 & 3 & 3 \\ 0 & 0 & 0 & -2\end{array}\right]$
b) $\left[\begin{array}{ccccc}1 & 1 & 0 & -10 & -9 \\ 0 & 0 & 1 & -7 & -7 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
c) $\left[\begin{array}{cccc}1 & 2 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3\end{array}\right]$
d) $\left[\begin{array}{llll}1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 0\end{array}\right]$

Question 10.

What is the inverse of $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4\end{array}\right]$?
a) $A^{-1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 / 2 & 0 \\ 0 & 0 & .25\end{array}\right]$
b) $A^{-1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
c) $A^{-1}=\left[\begin{array}{ccc}1 & 1 / 2 & 1 / 4 \\ 0 & -1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right]$
d) $A^{-1}=\left[\begin{array}{ccc}1 & 1 & -4 \\ 0 & -1 / 2 & 0 \\ 0 & 0 & 1\end{array}\right]$

Question 11.

What is the inverse of $A=\left[\begin{array}{cc}-3 & 2 \\ 4 & 1\end{array}\right]$?
a) $A^{-1}=\left[\begin{array}{cc}-1 / 3 & 0 \\ 0 & 1\end{array}\right]$
b) $A^{-1}=\frac{1}{-11}\left[\begin{array}{cc}1 & -2 \\ -4 & -3\end{array}\right]$
c) $A^{-1}=\frac{1}{5}\left[\begin{array}{cc}1 & -2 \\ -4 & -3\end{array}\right]$
d) $A^{-1}=\frac{1}{5}\left[\begin{array}{cc}3 & 4 \\ 2 & -1\end{array}\right]$

Question 12.

What is the row canonical form of $A=\left[\begin{array}{llll}1 & 0 & 2 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$?
a) Already in row canonical form
b) $\left[\begin{array}{cccc}1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$
c) $\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$
d) $\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$

Question 13.

Given $A^{-1}=\left[\begin{array}{cc}-1 & 0 \\ 2 & 4\end{array}\right]$ solve $A \vec{x}=\vec{b}$ for $\vec{b}=[1,2]^{T}$.
a) $\vec{x}=\left[\begin{array}{c}-1 \\ 10\end{array}\right]$
b) $\vec{x}=\left[\begin{array}{c}-2 \\ 8\end{array}\right]$
c) no solution
d) infinite solutions

Question 14.

How many solutions does $A \vec{x}=\vec{b}$ have? The augmented matrix is $[A \mid b]=\left[\begin{array}{cccc}0 & 0 & 2 & -3 \\ 0 & 1 & 5 & 10 \\ 0 & 0 & 0 & 3\end{array}\right]$.
a) no solution
b) infinite solution
c) insufficient information
d) one solution

Question 15.

Given $[A \mid b]=\left[\begin{array}{cccc}1 & 0 & 2 & -3 \\ 0 & 0 & 5 & 10 \\ 0 & 0 & 0 & 0\end{array}\right]$ how many solutions does $A \vec{x}=\vec{b}$ have?
a) no solution
b) infinite solution
c) insufficient information
d) one solution

Question 16.

Given $[A \mid b]=\left[\begin{array}{cccc}1 & 0 & 2 & -3 \\ 0 & 1 & 5 & 10 \\ 0 & 0 & 1 & 0\end{array}\right]$ how many solutions does $A \vec{x}=\vec{b}$ have?
a) no solution
b) infinite solution
c) insufficient information
d) one solution

Question 17.

Which of the following sets of vectors are independent?
a) $\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$
b) $\left\{\left[\begin{array}{c}1 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 4\end{array}\right],\left[\begin{array}{c}-2 \\ 3\end{array}\right]\right\}$
c) $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right], 5\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$
d) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$

Question 18.

Vector $\vec{v}=[-5,2]^{T}$ is a linear combination of which set of vectors?
a) $\left\{\left[\begin{array}{c}-5 \\ 0\end{array}\right],\left[\begin{array}{c}-2 \\ 0\end{array}\right]\right\}$
b) $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{c}-8 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$
c) $\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$
d) None of the above

Question 19.

Vector $\vec{v}=[-1,1]^{T}$ is a unique linear combination of which set of vectors?
a) $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$
b) $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$
c) $\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -2\end{array}\right]\right\}$
d) None of the above

Question 20.

Vector $\vec{v}=[-3,1]^{T}$ is in the span of what set?
a) $\left\{\left[\begin{array}{l}1 \\ 5\end{array}\right],\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$
b) $\left\{\left[\begin{array}{c}6 \\ -2\end{array}\right]\right\}$
c) $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$
d) All of the above

Question 21.

Which matrix below has $\operatorname{colsp}(A) \in \mathbb{R}^{3}$?
а) $\left[\begin{array}{cccc}1 & 0 & 2 & -3 \\ 0 & 1 & 5 & 10 \\ 0 & 0 & 0 & 0\end{array}\right]$
b) $\left[\begin{array}{cccc}1 & 0 & 2 & -3 \\ 0 & 1 & 5 & 10 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
c) $\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 5 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$

Question 22.

Which matrix below has $\operatorname{colsp}(A)=\mathbb{R}^{3}$?
a) $\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 5 \\ 0 & 0 & 0\end{array}\right]$
b) $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
c) $\left[\begin{array}{cccc}1 & 2 & 5 & -3 \\ 0 & 1 & 0 & 10 \\ 0 & 0 & 1 & 0\end{array}\right]$
d) None of the above

Question 23.

What is the rank of matrix $A=\left[\begin{array}{cccccc}1 & 0 & 2 & 2 & -4 & -10 \\ 0 & 1 & 5 & 0 & 3 & -1 \\ 0 & 0 & 4 & 4 & -3 & 1\end{array}\right]$?
a) 1
b) 2
c) 3
d) 6

Question 24.

Which of the following sets is a basis for $\operatorname{rowsp}(A)$, where $A=\left[\begin{array}{ccc}1 & 0 & -2 \\ 3 & 4 & 0 \\ -5 & 0 & 1\end{array}\right]$, which is row equivalent to $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$?
a) $\left\{\left[\begin{array}{c}1 \\ 3 \\ -8\end{array}\right]^{T},\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]^{T},\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]^{T}\right\}$
b) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]^{T},\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]^{T},\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]^{T}\right\}$
c) $\left\{\left[\begin{array}{c}1 \\ 3 \\ -5\end{array}\right]^{T},\left[\begin{array}{l}0 \\ 4 \\ 0\end{array}\right]^{T},\left[\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right]^{T}\right\}$
d) All of the above

Question 25.

Which of the following sets is a basis for $\operatorname{colsp}(A)$, where $A=\left[\begin{array}{llll}1 & 0 & 2 & 2 \\ 0 & 1 & 5 & 0\end{array}\right]$?
a) $\left\{\left[\begin{array}{l}2 \\ 3\end{array}\right],\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$
b) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 2\end{array}\right]^{T},\left[\begin{array}{l}0 \\ 1 \\ 5 \\ 0\end{array}\right]^{T}\right\}$
c) $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$
d) None of the above

Question 26.

What is $\operatorname{dim}(\operatorname{rowsp}(A))$, where $A=\left[\begin{array}{llll}1 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 \\ 0 & 2 & 5 & 0 \\ 0 & 0 & 0 & 5\end{array}\right]$?
a) 1
b) 2
c) 3
d) 4

Question 27.

What is $\operatorname{dim}(\operatorname{colsp}(A))$, where $A=\left[\begin{array}{llll}1 & 0 & 2 & 2 \\ 0 & 0 & 0 & 3 \\ 0 & 2 & 5 & 0 \\ 0 & 0 & 0 & 5\end{array}\right]$?
a) 1
b) 2
c) 3
d) 4

Question 28.

What is the $\operatorname{dim}(\operatorname{Ker}(A))$ if $A=\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 3 \\ 8 & 1 & 0 & 1 & 3 \\ 3 & 0 & 2 & 0 & -1\end{array}\right]$?
a) 0
b) 1
c) 2
d) 3
e) 4

Question 29.

Which of the following vectors is in the null space of $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$?
a) $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$
b) $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
c) $\left[\begin{array}{c}-2 \\ 0 \\ -1\end{array}\right]$
d) $\left[\begin{array}{c}-2 \\ 1 \\ -1\end{array}\right]$

Question 30.

Which of the following matrices has $\operatorname{det}(A)=-6$?
a) $A=\left[\begin{array}{cccc}3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 4 & -1 & -1 & 0 \\ -2 & 0 & 0 & 2\end{array}\right]$
b) $A=\left[\begin{array}{ll}2 & 4 \\ 1 & 1\end{array}\right]$
c) $A=\left[\begin{array}{cc}1 & -6 \\ 1 & 1\end{array}\right]$
d) $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & -6 \\ 0 & 1 & 1\end{array}\right]$

Question 31.

Which of the following matrices has $\operatorname{det}(A)=0$?
a) $A=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0\end{array}\right]$
b) $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
c) $A=\left[\begin{array}{ccc}0 & 2 & 0 \\ -10 & 8 & 5 \\ -2 & 6 & 1\end{array}\right]$
d) All of the above

Question 32.

Compute the determinant of $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 1 & 4 & 5 \\ 2 & 4 & 7\end{array}\right]$?
a) 10
b) 28
c) 0
d) 1
e) None of the above

Question 33.

Let A and B be 4×4 matrices with $\operatorname{det}(A)=-3$ and $\operatorname{det}(B)=-2$, $\operatorname{compute} \operatorname{det}\left(B A^{T}\right)$.
a) 6
b) -6
c) $3 / 2$
d) $-2 / 3$
e) Need more information

Question 34.

Which of the following matrices has eigenvalues $\lambda_{1}=1, \lambda_{2}=6, \lambda_{3}=-2$?
a) $A=\left[\begin{array}{ccc}-2 & -1 & 4 \\ 0 & 1 & 10 \\ 0 & 0 & 6\end{array}\right]$
b) $A=\left[\begin{array}{cc}-2 & 0 \\ 1 & 6\end{array}\right]$
c) $A=\left[\begin{array}{ccc}0 & 6 & 0 \\ 0 & 8 & 0 \\ -2 & 6 & 1\end{array}\right]$
d) $A=\left[\begin{array}{ccc}0 & 0 & 1 \\ 2 & 6 & 5 \\ 1 & 3 & -8\end{array}\right]$

Question 35.

Which of the following matrices has at least one eigenvalue $\lambda=0$?
a) $A=\left[\begin{array}{ccc}-2 & -1 & 4 \\ 0 & 0 & 10 \\ 0 & 1 & 6\end{array}\right]$
b) $A=\left[\begin{array}{cc}-2 & 0 \\ 0 & 6\end{array}\right]$
c) $A=\left[\begin{array}{ccc}0 & 0 & 8 \\ 1 & 1 & 0 \\ -2 & 6 & 1\end{array}\right]$
d) $A=\left[\begin{array}{ccc}0 & 0 & 1 \\ 2 & 6 & 5 \\ 1 & 3 & -8\end{array}\right]$

Question 36.

A matrix $A \in \mathbb{R}^{3 \times 3}$ has eigenvalues $\lambda_{1}=2, \lambda_{2}=-1, \lambda_{3}=3$. Which of the following statements must be true?
a) Matrix A has 3 linearly independent eigenvectors
b) Matrix A is full rank
c) The reduced row canonical form of A has three pivot points
d) All of the above

Question 37.

Which of the following vectors (if any) are eigenvectors of $\left[\begin{array}{ccc}4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]$? Let $u=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right], v=$ $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
a) both
b) u
c) v
d) neither
e) Not enough information

Question 38.

How many distinct eigenvalues can a 3×3 matrix have?
a) 1
b) 2
c) 3
d) 4
e) ∞

Question 39.

Which of the following vectors are an orthogonal to $v=\left[\begin{array}{c}2 \\ 1 \\ -2\end{array}\right]$?
a) $\left[\begin{array}{c}-2 \\ 0 \\ -2\end{array}\right]$
b) $\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right]$
c) $\left[\begin{array}{c}0 \\ 1 \\ 1 / 2\end{array}\right]$
d) All of the above

Question 40.

Which of the following sets of vectors are an orthogonal basis for \mathbb{R}^{3} ?
а) $\left\{\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ 1 \\ -4\end{array}\right],\left[\begin{array}{c}3 \\ -2 \\ 1\end{array}\right]\right\}$
b) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$
c) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$
d) All of the above

Question 41.

Which of the following matrices are invertible?
a) $A=\left[\begin{array}{ccc}2 & -1 & 4 \\ 0 & 1 & 10 \\ 0 & 0 & 6\end{array}\right]$
b) $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
c) $A=\left[\begin{array}{lll}0 & 6 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
d) All of the above

Question 42.

A matrix $A \in \mathbb{R}^{3 \times 3}$ is invertible. Which of the following statements must be true?
a) $A x=b$ has a unique solution
b) Matrix A has $\operatorname{det} \neq 0$
c) The reduced row canonical form of A has
d) All of the above three pivot points

Question 43.

If $u=\left[\begin{array}{c}0 \\ 1 \\ -2\end{array}\right], v=\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]$ then $u \cdot v=$
a) 2
b) -2
c) 0
d) 1

Question 44.

If $u=\left[\begin{array}{c}2 \\ 3 \\ -1\end{array}\right], v=\left[\begin{array}{l}2 \\ 1 \\ 5\end{array}\right]$ then what is $\operatorname{dist}(u, v)$
a) $\sqrt{40}$
b) $\sqrt{-32}$
c) $\sqrt{8}$
d) $\sqrt{-4}$

Question 45.

If $u=\left[\begin{array}{c}2 \\ 1 \\ -2\end{array}\right]$ then $\|u\|=$
a) 4
b) $\sqrt{5}$
c) 3
d) 1

Question 46.

If there exists a matrix P such that $D=P^{-1} A P=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$, what is the $\operatorname{dim}(\operatorname{Ker}(A))$?
a) 0
b) 3
c) Not enough information

Question 47.

If there exists a matrix P such that $A=P D P^{-1}$ where $D=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1\end{array}\right]$ what are the eigenvalues of A^{2} ?
a) $\lambda_{1}=1, \lambda_{2}=4, \lambda_{3}=-1$
b) $\lambda_{1}=1, \lambda_{2}=4, \lambda_{3}=1$
c) . $\lambda_{1}=1, \lambda_{2}=\sqrt{2}, \lambda_{3}=i$
d) Not enough information

Question 48.

What are the eigenvalues of $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right]$?
a) $\lambda_{1}=2, \lambda_{2}=1$
b) $\lambda_{1}=1, \lambda_{2}=4$
c) . $\lambda_{1}=1, \lambda_{2}=\sqrt{2}$
d) Not enough information

Question 49.

What is a possible transition matrix P that diagonalizes $A=\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right]$?
a) $A=\left[\begin{array}{cc}1 & -1 \\ 0 & 1\end{array}\right]$
b) $A=\left[\begin{array}{cc}.5 & -.5 \\ 0 & 1\end{array}\right]$
c) $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
d) A is not diagonalizable

Question 50.

If $\lambda=3.089$ is an eigenvalue of $A=\left[\begin{array}{cccc}2 & 1 & -4 & -1 \\ 0 & 10 & 7 & 2 \\ 5 & -1 & 0 & -1 \\ 3 & 3 & -4 & 2\end{array}\right]$ what is the $\operatorname{det}(3.089 I-A)$?
a) 0
b) 2
c) 6
d) 7

